


# RADIO:T EXPERIMENTER 

## Fall 1960 Edition

Complete 2-Meter Ham StationEconomy Frequency Standard27Two-Tube Long Wave Receiver35 One-Tube Tin Can ReceiverVersatile Waveformer ..... 4337
Tunnel Diode Oscillator ..... 47
Meters and Multimeters ..... 50
Kid Kaller ..... 55
Finding the Hidden DX. ..... 58
High-Quality Pre-Amp ..... 60
Musical Annunciator ..... 63
Miniature Tape Recorder ..... 67
Tape Recorder Power Supply ..... 74
The Typacode ..... 77
Electronic Antenna Relay ..... 80
Pot Wiress
Pot Wiress Portable Wireless Intercom ..... 83
Dry Battery Tester-Charger ..... 87
The Little Red Hot Receiver ..... 90
Underwater Intercom ..... 94
Transistor Analyzer ..... 99
Electronic Photo-Quiz ..... 103
104
AC Power Panel107
Experimental Van de Graaff Generator ..... 110
Emitter Follower ..... 116
Magic Light Bulb ..... 119
Professional Electronic Wiring ..... 120
The Leasebreaker ..... 123
Radio Tuner for Child's Phono. ..... 128
What to Listen for on Short Wave ..... 131
Handy Foot Switch ..... 133
Transmitter for the Novice ..... 134
Amplification ..... 137
Wrist Radio ..... 142
Code Practice Oscillators ..... 145
Adapter Unit to Check Tubes ..... 148
One-String Electric Guitar. ..... 151
Patch Panel ..... 153
Portable Radio-Phonograph ..... 155
Testing Conductivity of Liquids ..... 159
White's Radio Log ..... 161

Cover by Harold R. Stluka

# B. G. DAVIS Publisher 

 Published and Copyrighted 1960 by SCIENCE AND MECHANICS PUBLISHING COMPANYA Subsidiary of Davis Publications, Inc.

## 450 East Ohio Streel

Chicago 11, Illinois
The Radio-TV Experimenter contains a selected few of the most popular electronies projects and radio and TV maintenance articles that have appeared in Science and Mechanics Magazine, plus a number of projects and helpful articles on the same subjects appearing for the first time.

Science and Mechanics Handbook Annual No. 6, 1960-No. 569

Curtis L. Johnson Editor

Herb Siegel
Associate Editor
Lynell A. Johnson
Editorial Assistant
Bill Wadkins
Art Director

## Ray Forsberg

Advertising Manager


SOUTHWEST RESEARCH INSTIUTE
OHIdinte\%

## TRUE BASIC SCENC: COURSF

## NO EXPERIENCE NECESSARY

- The 8 instruction manuals are expertly wriften, clearly illustrated - exciting, interesting.
- Without previous experience you can complete every project and gain a comprehensive science background.
CHALLENGING - STIMULATING - REWARDING


Analyzing Glowing Gases


## SCIENCELAB

## NOW over 110 fascinating projects with

## 

## COMPLETE LABORATORY COMES IN 8 kITS ... ONE A MONTH supplies ALL the equipment for ALL the following:

##     

## PHOTOELECTRIC EYE

 Photoelectric Cell. Exciter lamp and Electronic Relay. Everything you need to control motors, bells, olarms. and do other light beam experimentsChat PR \&





## RADIO SERVICE EOUIPMENT

 Radio paras to suild yeur own Radio Signal Trocer and a Probe light Continuity Tester. Both piecesore invaluable in radio are invaluoble in radio servicing






SPECTROSCOPE
Fascinating optical instrvment wied to identify and onalyze ubstancea by observing the spectrum of their
 POQ\&




## RADIO RECEIVER Three Tube Short Wave ( 80 Me Mer) and Standard Brood Standard Broadcast Receiver. Sensitive Regenerative Cirevit uses regular 115 yolf AC . Complete with Head yolt AC. Complete with Head Sel. <br>  <br>    

STROBE LIGHT
A variabte pulse neon tamp. "Freezes" motion of rapidly vibral. ing or rotating obiects for close stud'y and checking frequencies, RPM.

## $306+10,5 \times P E R M A C H$






## SLIDE PROJECTOR

Takes 16 mm and 35 mm slides, sharp focusing, convection coofed. G.E Proiettion lamp included. Also of aptoble as a Projection Microtcope






HEAT EXPERIMENTS Study the Molecular Theory of heat using 2 Thermometers, Thermostat, 3 foot Gas Thermomeler and spasial microscope arrangement that shows the effect of Molecular Movement.

## DC PGIERR SHREIY





## ELECTRONIC EXPERIMENTS

 Expiore functions of vacuum tubes Build an electronic SwitchVier, and other experimental circuits-BROADCAST TBAMSMITES:





## TELESCOPE

A mounted astronomical Telescope. High quality ground lens enables you to examine details of the moon's surface and distant objects.

## HEBOTCORE






## ATOMIC CLOUD CHAMBER

 See illuminaled tracks of speeding nuclear particles emanating from radioactive A!pho sourse and mysterlous sosmit roys from outer space.
## 







## 


 SOLDERING IRON
Your Satisfaction or Your Money Back... AND you may cancel at any time without obligation. These "no risk" assurances because we know you will be... )

## A WMUABI: CIEMCI IA


 Whegoles Imm ind othet Mintto mimitoilimes. telall Volie of firts Aloneis OVFII FHTY DOLLARS

## mematrs ane cmasmanst

I wish I could provide each of my Physics students wish all of your enjoyble kits. You are doing a wonderful job.

Allen T. Ayers
Physics Depr.
Jamestown High School
Jamestown, New York

SURPRISED!
FOR SAFETY!
Cirsvits are low voltage supplied by isolation transformer that fomet Kif.

AMAZED!


501 AMERICAN BASIC SCIENCE CIUB 501 E. Crockeft, San Antonio 6, Texas Start sending me A.B.S.C's'Home Science Lab" in eight kits, one each month. If not satisfied on insprection of first kit I may return it for inmediate refund. (I choose plan checked.) ) I enclose $\$ 3.00$ and will pay 83.45 plus COD postage on arrital of each kit. I may cancel unshipred kits at any time. I enclose $\$ 29.60$ as full payment, Possage Paid, for all 8 kits. I may cancel any tirne and get full refund on unstupped kits.


# COYNE offers 



The future is YOURS in TELEVISION: A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money early in course. Free Lifetime Employment Service to Graduates.


GHARTERED AS AN EDUCATIONAL INSTITUTION NOT FOR PROFIT
1501 W. Congress Parkway - Chicago 7, Dept. 60-H9

E. W. COOKE, Jr., President

Coyre-the metitution behind this training . - the largest, oldest, best equipped

## Send Coupon or write to address below

 for Free Bookand full details, including easy Payment Plan. No obligation, no salesman will call.

## COYNE Television

## Home Training Division

Dept. 60-H9, New Coyne Building 1501 W. Congress Pkwy., Chicago 7, Ill.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name
Address
City $\qquad$


# TRANSISTORIZED POCKET FM RADIO AND CONVERTOR KIT 



Fun for the youngster or the veteran in the electronic field . . . A 3-way transistorized pocket FM radio and tuner which tunes the complete FM band from 88 to 108.6 megacycles plus aircraft band from 109 to 145 megacycles. This fantastic set can be used in your car, home, or pocket, and needs no antenna or ground wires. Completely non-directional, this compact FM radio and tuner will play where all other radios have failed. Set has been demonstrated under an X-ray beam and near other electrical devices without any static or distortion. Featuring a two-stage circuit, this FM radio and tuner will produce music of top quality from stations located many miles from the receiver. Kit comes complete with easy-to-build instructions.

KIT, Complete with
Special Hi-Fi Earpiece with earmold, cord, and plug, \$29.95 postpaid. (less Earpiece, \$26.95)

## TWO-STAGE TRANSISTOR AMPLIFIER OR PRE-AMP KIT

 You can build a powerful two-stage amplifier or pre-amp which can be used as a phonograph amplifier or amplifier for a crystal set, and as a pre-amp for crystal or magnetic pick-up. Kit comes complete with two transistors, volume control with switch, attractive plastic case with a snap bottom, and is powered with a single penlight cell with an output of nearly $1 / 8$ of a watt. Complete with easy-to-follow instructions. $\$ 6.95$ postpaid.

## SPECIAL SECTION for RADIO BEGINNERS

Powerful 7. power magnifying glass mounted on $3^{\prime \prime}$ tweezers. Excellent tool for getting into difficult and hard-to-see places. Ideal for radio kit builders, model craftsmen and for the RadioTV service technician. Special low price, $\$ 2.25$ postpaid . . A REAL SERVICE AID BARGAIN!

Crystal-Set Kit \$1.25 p p
Headphones (double) $\$ 2.25 \mathrm{p} p$
Ball Bearing Tuning Condenser with Metal Dial and Knob $\$ 1.50$ p p

## (Free Crystal with each $\$ 10.00$ order)

Beginners all Wave Kit Two Stage Circuit with Transistor, High Frequency Tube. Drilled Chassis and all Clips and Wire- $\$ 7.95$ less batteries. Many users report up to 12,500 miles on short wave plus the Broadcast Band. Tunes from 16 meters to 160 meters.

## WORLD'S SMALLEST TWO BAND RADIO

tune in the world of excitement with the world's first three stage tranSISTORIZED TWO BAND RADIO KIT FOR ONLY $\$ 5.00$ FULL PRICE-READ CAREFULLY


This set tunes the broadcast band and a click on the band switch lets you enjoy exciting police calls, ship to shore, aircraft, both commercial and military, amateur phone stations, code and foreign stations from all over the world. (It's the best electronic buy ever offered.) Tunes as many stations as sets costing up to $\$ 100.00$. Kit includes the following parts: Min-Tube, Min-Tube Socket, a special detector, printed circuit plate, a band switch, a battery switch, a tuning knob, a two band coil, an (Ekeradio) electronic wand, four condensers, two resistors, two phone clips, antenna trimmer, four rubber mounting feet, hookup wire, a coil mounting clip, and a sheet of easy-to-follow instructions. A 722 or a 107 transistor can be used for the third stage (Not furnished). Any phones will work with this set. Two small batteries furnish the power (Not furnished). This can be mounted on your small board or small plastic box. Send only $\$ 5.00$, a self-addressed gummed label to facilitate shipping of this fantastic kit, and ten cents in stamps to the address below. If the above instructions are not followed, your order may be delayed several months, so read carefully.
NOW...gET EVERYTHING YOU NEED TO PREPARE TO EARN REAL MONEY IN

## One of

 Today's BRIGHTEST
## Opportunity Fields!

Today's great Electronics field offers you a chance of a lifetime to prepare for highly inferesting work and a wonderfully promising future! With so many new developments coming up in Electronics, opportunities for trained men were never brighter. Send coupon for details.
Right in your own home you may now get one of foday's most interesting . . PRACTICAL WAYS to prepare for a good job or your own business in Electronics. No previous technical experience or advanced education are needed! DeVry Tech brings you a unique 3-WAY COMBINATION of texts, home movies and real equipment-the same type of basic equipment as found in our well-equipped Chicago and Toronto Laboratories.

## EMPLOYMENT SERVICE

. . . helps you get staried foward a good job, or foward advancement in the company you now work for. FREE to all graduates.

EARN WHILE YOU LEARN DeVry Tech's practical program helps you to earn EXTRA MONEY in your spare time, servicing Radio and TV sets.

## Your Guide

## to PROFITABLE JOB OPPORTUNITIES

See how YOU may gef ready for Jobs as:
TV-Radio Broadcast Technician Color Television Specialist
Radar Operafor - Laboratory Technician Airline Radio Man - Computer Specialist Quality Control Manager
Your Own Sales \& Service Shop...PLus many others

"One of North America's Foremost Electronics Iraining Centers"


DaMDV TECHNICAL c VRY INSTITUTE CHICAGO 41, ILLINOIS

## 300 EXPERIMENTS

Build over 300 practical projects from many shipments of RadioElectronic parts. You build and operate TV-Radio circuits . . . wireless microphone . . . and many other major projects-all designed to provide outstanding practical experience at home.

## HOME MOVIES

Thanks to this exclusive home training aid, many important fundamen-: tals quickly become "movie clear." Now you can actually see electrons on the march and other "hidden ac-tions"-a wonderful advantage that is almost like having a teacher of your side.

## BUILD YOUR OWN TEST EQUIPMENT

As part of your home laboratory prajects, you BUILD and KEEP a fine quality 5 -inch COLOR OSCILLOSCOPE and a Jewel Bearing VACUUM TUBE VOLTMETER. You will find this equipment ideal for helping you earn in your spare time while a studentand later when working full time in the field.

## BUILD AND KEEP A BIG 21-INCH TV SET

For added practical experience, you can also build and keep this quality 21-inch TV SET that provides TV reception at its finest (DeVry Tech also offers another home fraining without the TV set).

## MAIL GOUPON TODAY

DeVRY TECHNICAL INSTITUTE
4141 Belmont Avenue, Chicago 41, ill., Dept. - RTE-4-Q
Please give me your FREE booklet, "Electronics in Space Travel," and tell me how I may prepare to enter one or more branches of Electronics.
Name $\qquad$ Age

Street
please print
Apt.
City $\qquad$ Zone $\qquad$ State

2045
Canadian residents address: DeVry Tech of Canada, Ltd. 970 Lawrence Avenve West, Toronto, Ontario

## BUILD THE BEST

 ELECTRONIC EQUIPMENTit's fun to bulld years-ahead money-saving

electronics 19at
sxxen
> featured in ALLIED's at9 4tur.rage 1961 ELECTRONICS CATALOG

build-your-own.. it's easy..it's fun


as l/ous makes you a more valuable and desirable technician, assures you of more money, faster progress and greater success. This practical step-by-step training makes everything interesting and easy, makes learning fun.
You don't have to leave home or quit your job to learn this simple, easy way. A few hours of your spare time each week soon prepares you for earning while learning and later for a big-pay job or profitable business of your own in this fabulous, fast-growing new industry.
3 new books contain complete information. Describe the course and many opportunities in this fantastic new field. Send for your 3 free books today!

## C.T.S.'s Complete Course!

C.T.S. training covers every phase of this fascinating new subject. You get this comprehensive training starting with your first lesson. You learn Radar, Sonar, Television, Radio and Electronics in C.T.S.'s Complete course. This broader knowledge and greater understanding means more jobs and higher pay for you. Why be satisfied with less? You learn faster and better with Christy Shop-Method Home Training. It gives you all the training you need in a clear, simple, easy-to-understand way.
Big pay, interesting work, immediate success, await those thoroughly trained in all branches of electronics. And the C.I.S. Master Shop-Method Home Training Course is the only complete course in Radar, Sonar, Television, Radio and Electronits.

## 19 TRAINING INSTRUMENTS INCLUDED

In a few months you learn what used to take years of hard work to master, reach your goal sooner and are better prepared to make maximum progress. Send for complete information today!

GHRISTY TRADES SCHOOL Dept. T-311
3214 W. Lawrence Ave. Chicago 25, III.

## MAIL COUPON TODAY <br> <br> 4

 <br> <br> 4}CHRISTY TRADES SCHOOL
Dept. T-311, 3214 W. Lawrence Ave., Chicago 25: Ill.
Gentlemen:
Please send me, without cost or obligation, two FREE Lessons and the new 24 -page illustrated book telling all about the C. T. S. Master Shop-Method Home Training Course in Radar, Sonar, Television, Radio and Electronies, and the many opportunities this new field offers.
$\qquad$
city $\ldots \ldots .$. State. $\ldots \ldots \ldots \ldots$.
$\square$
$\rightarrow 2$


## Meko <br> ELECTRON TUBE

INTRODUCES FOR THE FIRST TIME ANYWHERE A SELECT STOCK OF USED tUBES AT A FABULOUS LOW PRICE.
tunk lide
Each and every fube is fested in our own laboratory

- We guarantee FREE repland life test. our own lahoratory purchased from us replasement fort.
any or all operating which fails to function efficien any fube on any defective condifions. Prompt efficiently under The advertised pubes merchandise. Prompt refunds are made electrically is dearly so marfect factory seconds or new, but may be
022


Att IUBES SENT POSTAGE PAID
Please sand $25 t$ hendling for orders under $\$ 5$ Send $25 \%$
depasit in C.O.D. orders. Send approximate postage on Canedsen and foreign orders.
ICRO
ELECTRON TUBE CO.
P.O. BOX 55 Park Station. Paterson 3, N. J.

# Runabout Plans Only $\$ 1.00$ Get Plans Catalog FREE! 

Send us a single dollar bill and we will send you Craftprint No. 32 (size $21 \times 33^{\prime \prime}$ ) which gives detailed drawings and instructions for building Buzz, an $11^{\prime}$ hydroplaning runabout (usual price of plans, $\$ 1.00$ ) PLUS our fllustrated catalog of 196 do-it-yourself Craftprint plans (usual price, 20¢).

## Send your $\$ 1.00$ for No. 32 C to:

SCIENCE and MECHANICS, Dept. 248 450 East Ohio St., Chicago 11, Illinois

## Here You Gan Find a Solution to Practically ANY MECHANICAL PROBLEM!

PARTIAL CONTENTS: Accumulators
Air Conditionere
Alarms


Fastener
Feeders
Filtera



[^0]

A BOOK with OVER 8000 ILLUSTRATIONS with $\begin{aligned} & \text { descriptions }\end{aligned}$ of Mechanical Movements, Devices, Contrivances and Details

If you work with machinery of any kind, you may be
called upon to devise or improve some job or motion. To do this, you either have to rely on memory, experience or ingenuity Here in this new book-THE ENGINEERS GOESAURES by Herbert Herkimer-you will find ove kind of motion, force or work! It is accomplishing any contrivances. parts, details, tools, machines, devices and means-devised and developed by countless engineers, ma chinists and inventors over the years-co effect any motion or task. The material has been painstakingly assembled neering brochures, patent drawings, catalogs, etc. It is, by ar, the largest collection ever gathered in one book., and means and methods for accomplishing any particular task Each item, each device, each method is illustrated-. there are 8000 such illustrations-and each carries a pertinent description of its makeup and function. THE EN-
GINEERS' THESAURUS is a monumental work. It is 51/2"×81/2". 580 pages, printed on coated paper. Price Each one of lariffin Publishing Co., Dept. RT-10 ' $\$ 5.95$
these "ideas"
 just one may Send me a copy of THE ENGINEERS' of "headache", satisfied, can beturn book for refund. not Costs-ave on your to $\mid \square$ I enclose 85.95 ; send book parcel post. your profts! $\|^{\text {send }}$ total delivery charges. $\$ 5.95$ plus 62 c
Order by Mail |Nane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive ruar-


# NOW! McGraw-Hill's Low-Cost Home Course Shows 

# HOW TO FIX TV Radio and Record Changers RICHT AWAY <br> even if you've never looked inside a set before! <br>  <br> > AT LAST! At Amazing LOW COSTa Complete TV-Radio Repair Course. TELLS and SHOWS How to do Every Job Quickly and Easily-Make GOOD MONEY, Full or Spare Time, in the BOOMING Repair Business <br> <br> AT LAST! At Amazing LOW COST <br> <br> AT LAST! At Amazing LOW COSTa Complete TV-Radio Repaira Complete TV-Radio Repair Course. TELLS and SHOWS How to Course. TELLS and SHOWS How to do Every Job Quickly and do Every Job Quickly and Easily-Make GOOD MONEY, Easily-Make GOOD MONEY, Full or Spare Time, in the Full or Spare Time, in the BOOMING Repair Business 

 BOOMING Repair Business}

How would you like to be boss of a nice TV-radio-record changer repair business - making $\$ 50$ to $\$ 75$ spare time, or $\$ 150$ and up in your own shop?
Now, thanks to McGraw-Hill's new 6-volume Course, you can get started right away! This Course brings you EVERYTHING you need to "cash in" on the TV-RadioChanger boom. Over 2,350 pages of money-making ideas and techniques by top factory engineers and electronics experts. TWO HUGE TROUBLESHOOTERS tell exactly WHERE to begin, WHAT tools to use. THREE GIANT REPAIR MANUALS tell and show how to FIX troubles the easy way, "polish off" every job like a whiz. Complete Home Study Volume guides you every step of the way, tells how to build your business into a spare- or full-time MONEY-MAKER!

## EARN While You Learn

Tested - and now used in repair shops and by electronics instructors - Course volumes are simple enough for beginners, amaze "pros" with quick, easy methods. Start you doing simple repairs - and earning money-after 30 hours (or less) of reading and easy study. ABC pictures and directions make tougher jobs a "snap."

NO previous training needed; TV repair business pays well in good times or bad. NO complicated formulas. PLAIN ENGLISH pictures and directions cover ANY job on EVERY SET-tubes, circuits, speakers, new ac/dc. am/fm/shortwave portables, Color TV, even what to charge for every job and how to get customers!

## Age and Education No Barrier

Age doesn't matter. Past experience doesn't matter. Over 40 MILLION TV sets, 130 MILLION radios -and the shortage of re-pairmen-mean big money for you. Course makes it easy to cash in, start your own secure, profitable business.

## 0

 PARTIAL CONTENTS Television and Radio Repairing - Testing, repairing, replacing parts, 566 pages. 700 "This-Is-How' ${ }^{\text {p }}$ pictures, diagrams. By John Markus, Feature Ed., Electronics Magazine.2 Practical Radio Sorvicing -Easy-to-follow directions, diagrams, drawings - with job sheet for every repair job. 599 pages. 473 illus. By Whilam Maring Experts.
3 Proitable Radio Troubleshooting -WHERE to look and WHAT to do for every trouble. How to avoid costly mistakes. handie customers profitably. 330 pages. 153 "how to" illus. By William Marcus, Alex Levy.


Profitable TV Troubleshooting -Short-cuts to SPOT and FIX every trouble-fast. for big profIts. By Eugene A. Anthony, Service Consultant. General Elec. Co.

Repairing Record Changers -Step-by-step pictures and directions - how to set up service bench. etc. 278 pages. 202 And, Eng. DuM oy Lab. Inc.
6 Complete Home Course Outline - Getting started in television and radio servicing. How to get the most out of your course How to get ahead FAST. By John Markus.
proftadie
TELEMSHW
Hever fheones

## SEND NO MONEY

Try Course 10 days FREE. (We pay shipping!) If you don't agree it can get you started in a moneymaking repair business - return it, pay nothing. Otherwise keep it, earn while you learn; and pay on easy terms. Mail coupon NOW. McGraw-Hill Book Co., Dept. RAD 61 327 W. 41 st St., New York 36, N.Y.

5 POS 4 Valuable Repair Aids: TV, RADIO, CIRCUIT and TRANSISTOR Defect-0-Scopes (Total Value $\$ 4.00$ ) Detect-0-soppe FREE - whether you keep Course or not - FOUR DETECT-O-SCOPE Charts. TV and RADIO Scopes enable you to spot tube troubles in a jiffy. CIRCUIT and TRANSISTOR Scopes spot circuit and transistor troubles. Make fix-it jobs easier, faster. $16 \times 21$ inches each. ALL POUR (worth \$4.00) yours FREE.
$T=$ THIS COUPON SAVES YOU $\$ 13.30$ -MeGRAW-HILL Book Co., Dept. RAD 61 327 West 41 st St., New York 36, N. Y.
Send me - postpaid - for 10 DAYS' FREE TRIAL the 6-Vol. McGraw-Hill TV, Radio and Changer Servicing Course. If okay, I'll remit $\$ 4.95$ in 10 days; then $\$ 5.00$ monthly for 5 months. (A total savings of $\$ 13.30$ on the regular price of Course and Detect-OScopes.) Otherwise, I'll return Course in 10 days; pay nothing.
ALSO send FREE (to KEEP whether or not $I$ keep Course) the TV. RADIO, and CIR CUIT DETECT-O-SCOPE CHARTS, plus up-to-the-minute Transistor Detect-O-Scope total value $\$ 4.00$.

Name. ..... (Please Print Cleariy)
Address.
.........................
Zone No.
City.................... (if any).... . State..... . $\square$ CHECK HERE if you prefer to enclose first payment of $\$ 4.95$ with coupon. Same easy pay plan; same 10 -day return privilege for fult refund.

## EXPLAINS ELECTRICAL TERMS IN A JIFFY!

New Guide Gives Terms, Definitions, Formulas, Charts and Diagrams
A quick easy way to put needed information at your fingertips. Examine this New Practical Dictionary of Electricity and Electronics FREE for 10 days at our risk.
THE WORKING VOCABULARY YOU MUST HAVE. Jam-packed with both standard eleetrical terms and the latest developments in the field, written clearly and simply for beginner and veteran alike. Terms essential in TV, Radio, X-Ray, Radar, Automation and ali Industrial applications are covered.
PACKED WITH DESCRIPTIVE PICTURES. Scores of photos, drawings, sketches so clear you can't go wrong. Help make terms like "amplidyne," "kinescope," "dynamotor" easy to grasp. Many tables, charts, graphs, most-used symbols.
SEND NO MONEY. JUST SEND NAME. Fill in coupon below and get The Practical Dictionary of Electricity and Electronies for FREF 10-day trial examination. Pay nothing now. Pay pothing to postman on delivery.

## american technical society, Dept. Uo7

 848 E. 58th Street-Chicago 37, Illinois

If You Keep It Only $\$ 595$ Others Cost up to $\$ 20.00$ IHCLUAES HANDBEOK Partial Contents:

- Formulas Electrical Electronics Inductance Capacitance
- Tables Measurement Letter Symbols Color Coding
- Diagrams - Graphical Symbols

MAIL COUPON • FREE 10 DAY TRIAL
ANERICAN TECHNICAL SOCIETY, Dept. U07
848 E. 58th Street, Chicago 37. Illinois
Send me THE PRACTICAL DICTIONARY OF ELECTRICITY AND ELECTRONICS for 10 -day FREE EXAMINATION. If I keep the book I will send you $\$ 5.95$ plus shipping within 10 days. Otherwise, I will return it and owe you nothing. MY NAME

## ADDRESS

| CITY |
| :--- | :--- |
| We pay shipping cosis if you enclose $\$ 5.95$ with this coupon. Same refund guarantee. |



Slightly used crank style CABINETS (once used everywhere) for Home Hobby Shops. Complete with transmitter, receiver, bells, crank and shelf (Less Generator). Has all of the outside parts. Make beautiful, unique Radio Cabinets, Liquor Chests, Spice Cabinets, Flower Planters, etc. Immediate deliveries assured. $\$ 7.00$, F.O.B. Chicago.



## SO EASY IT'S SHOCKING, IF YOU USE ENLARGED PLANS

to build electronic projects. Enlarged stze, step-bystep craft print plans-complete with detailed materials lists-are avallable for the following:
191. TESLA COIL. Produces 70,000 volts at 500,000 cps. spectacular but safe..................................................... $\$ 1.00$ 227. REPULSION COIL. Defies law of gravity-electromagnetically .. ..................................................... $\$ 1.00$ 243. DEMO ELECTRIC MOTORS. Plans for both windmlll and engine types..................................................... $\$ 1.50$ 251. SOLAR BATTERY AND MOTOR. Battery's volt at 180 ma drives motor.......................................................... 1. 258. SUN-POWERED RELAY, Light-activated control with a variety of practical applications.............................. $\$ 1.00$ 264. HI-FI FM RECORD PLAYER. Phono oscillator, arm and 265. ELECTRICAL COIL-WINDING MACHINE. Motor-now. ered with foot-controlled reactor.................................. $\$ 1.00$ 279. WIMSHURST STATIC MACHINE. Constant source of static electricity....................................................... . $\$ 1.50$ 283. VAN DE GRAAFF GENERATOR. Costs $\$ 30$ to build. Produces up to 250,000 volts..................................... $\$ 1.50$ 301. YAN DE GRAAFF GENERATOR. Produces up to 400,000 volts. This is the apparatus that can stand your hair on end!
 reguiar price of each print. Thus, for two prints, deduct 504; three prints, 754, etc. Use handy coupon below. Satisfaction
guaranteed or money back.

SCIENCE and MECHANICS, Dept. 249
450 East Ohio St., Chicago 11, Illinois
Enclosed is \$ $\qquad$ Please send me the circled plans.
These plans are $\$ 1.00$ each
191227268 264 265

These plans are $\$ 1.50$ each

| 243 | 251 | 279 | 283 | 301 |
| :--- | :--- | :--- | :--- | :--- | :--- |

NAME
ADDRESS
CITY \& ZONE
STATE
$\square$ Here's 20c. Please send me your Illustrated catalog of 196 craft print plans.

## LET RCA TRAIN YOU IN ELECTRONICS

RCA Institutes, one of the world's largest electronic technical schools, offers a Home Study Course in . . . ELECTRONICS FOR AUTOMATION
... Now you have four comprehensive courses for your electronic training . . . from basic electronic theory to the more advanced principles of color TV and Automation.


Practical work with the very first lesson. Pay-as-you-learn. You need pay for only one study group at a time.

RCA INSTTUTES, IIC. Home Study School, Dept. RX-90 A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.
Without obligation, send me the FREE catalog of Home Study Courses. No solesman will call.

Name
.Age.
Address......................................................................................................
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........................
City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Zone . . . . . State .
Veterons: Enter discharge date
CANADIANS - Iake advantage of these same RCA courses at ne odditional cost. No postage, no customs, no delay. Send coupon to: RCA Victor Company, Ltd., 5581 Royalmount Ave., Montreal 9, Quebec To save fime, paste coupon on postcard


## Electrostatic Generators



## (Van de Graaff Type)

 500.000 VOLTS. This model available in kit form is over 3 feet tall and has a $15^{\prime \prime}$ diameter spherical charge collector. Fit includes $15^{\prime \prime}$ hemispheres, plastic tube. pulleys, bearings, belt, frame, and assembly directions.\$31.50 Postpaid
$\mathbf{2 0 0}, \mathbf{0 0 0}$ VOLTS. This model shown at left) is $17^{\prime \prime}$ high and has a $61 / 2^{\prime \prime}$ diameter spheroldal charge collector. Operate on 110 volt Ac. Fuly assembled, postpaid $\mathbf{\$ 3 9 . 5 0}$, Kit form \$24.50. Other models to $1,000,000 \mathrm{~V}$.
Vaeuum Equipment, Mech. pumps for pressure range 1 Atmosphere down to 150 Mi crons $\$ 32,50$. Diffusion pumps for pressure from 1 mm Hg. down to 01 Microns Micron to 1000 Microns $\$ 14.00$.

High Vacuum Equipment Until recently this field was priced out of the average experimenter's reach. We have pioneered the \$ 10.00 mechanical pump, S 14.00 McLeod gauge and S 16.00 diffusion high vacuum pump. It is now possible to make a high vacuum system for less than $\$ 50.00$ if you follow the directions in our booklets. "Making a Vacuum Pump From A Used Refrigerator Compressor $\$ 2.00$. (Compressors arailable from junk yards will make vacuum pumps comparable to many $\mathbf{S 1 0 0 . 0 0}$ models.) "Experiments in High Vacuum" $\$ 1.00$, describes a number of experiments that can be performed only in high vacuum. Included are directions for making radiometers, gas discharge tubes, evaporated films, and simple experiments such as estimating the mass of the electron. Also-low priced Stroboscope-Telescopes-Components for all equipment mentioned above. Send
for Free Catalogue. for Free Catalogue.
MORRIS 8 LEE, 294 EIm, Buffalo 3, N. Y.

## Scincte mad michanics

The Magazine That Shows You How

- If you're a man (or woman) interested in news of science . . .
- If you're a workshop or other hobby aficionado . . .
- If you're a do-it-yourselfer (by choice or otherwise). . .
- If you're all or any of these, you'll want to subscribe now to Science and Mechanics. Always a leader in its field, S\&M (now a Davis Publication) is better, and bigger than ever.
- The S\&M Features section regularly contains one or more car performance test reports, new product information of interest to every householder or hobbyist, and entertaining, authoritative writeups of everything new and exciting under the sun from space satellites to talking golf balls, radar to rat traps, jet aircraft to self-sealing rivets.
- The S\&M How-to-Do-It section has-every issue-boat-building plans, home improvement and workshop projects, electrical and electronic projects, and articles on hobby-craft, auto maintenance, patents, and inventions. You're told and shown how to do it the quickest, easiest, thriftiest way, because S\&M's how-to-do-it articles are written by craftsmen who have done and built the things they write about.

For your convenience, a handy coupon is attached.


## FOR REPAIRING ALL ELECTRICAL APPLIANCES and AUTOMOBILE CIRCUITS

As an electrical frouble shooter the Model 70:<br>- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.<br>- Measures A.C. and D.C. Voltages, A.C. and D.C. Current, Resistances, Leakages, etc.<br>- Will measure current consumption while the appliance under test is in operation.<br>- Incorporates a sensitive direct-reading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.<br>- Leakage detecting circuil will indicate continuily from zero ohms to 5 megohms (5,000,000 ohms).<br>As an Automotive Tester the Model $\mathbf{7 0}$ will test:<br>- Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters - Distributors<br>- Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop<br>Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs. Fuses<br>- Heating Systems - Horms - Also will locate poor grounds, breaks in wiring, poor<br>connections, etc.

INCLUDED FREE This 64-page book-practically a condensed course in electricity. Learn by doing.

Just read the following partial list appliances and motors using a simof contents: What is electricity? - plified trouble-shooting technique. Simplified version of Ohms Law What is wattage? Simplified wattage charts - How to measure voltage, current, resistance and leakage . How to test all electrical


- How to trace trouble in the elec-
trical circuits and parts in automobiles and trucks.
- How to trace trouble in the elec-

Model 82A


## TEST ANY TUBE IN 10 SECONDS FLAT!

## (1) Turn the filament tion specified.

THAT'S ALL! Read emission quality direct on bad-good meter scale.

FEATURES:

- Tests over 600 tube types. - Tests OZ4 and other gas. flled tubes.
- Employs new $4^{\prime \prime}$ meter with sealed air-damping chamber resulting in accurate vibrationless readings.
- Use of 22 sockets permits testing all popular tube types and prevents possible obso-
- Dual scale meter permits testing of low current tubes.
- 7 and 9 pin straighteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultra-sensitive leakage test circuit will indicate leakage up circuit will indi


## lescence. <br> SHIPPED ON <br> NO <br> MONEY

 Production of this Model was delayed a full year pending careful study by Superior's engineering staff of this new method of testing tubes. Don't let the low price mislead yout We claim Model 82A will outperform similar looking units which sell for much more-and as proon, we offer to ship it on our examine before you buy policy.Model 82A comes housed in handsome, Model $82 A$
porfable Soddle-Stitched Texon case. (Picture Tube Adapter available for $\$ 5.50$ additional)

Iry any of the above instruments for 10 days before you buy. II somplately safisfied then send down payment and pay balance as indisafed on coupon. No Interest or Finance Charges Added! if not completely satisfied return unit to us, no explanation nectessary.

MOSS ELECTRONIC, INC.
Dept. D-797 3849 Tenth Ave., New York 34, N. Y. Please send me the units checked on approval. If completely satisfied I will pay on the terms specifise, with no interest or finance charges added. I will return after a 10

Name
Address
City ................................. Zone ........ State....... All prices net. F.O.B., N.Y.C.

- Model 82A..........Total Price $\$ 36.50$ $\$ 6.50$ within 10 days. Balance $\$ 6.00$ monthly for 5 months.
$\square$ Include Model 82A Picture Tube Adapter at $\$ 5.50$

COMPLETE SERVICE TRAINING . . . written so you can understiand it!
 Fix any TV or Radio Ever Made

## EASIER-BETTER -FASTER!

No complicated theory or mathematics! These famous Ghirardi books get right down to brass tacks in showing you how to handle all types of $A M, F M$ and TV service work by approved professional methods. Almost 1500 pages and over 800 clear illustrations show how to handle every phase of troubleshooting and servicing. Each book is co-authored by A. A. Ghirardi whose manuals have helped train more servicemen than any other books of courses of their kind!

## 1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

A complete guide to profitable professional methods. For the beginner, it is a comprehensive training course. For the experienced serviceman, it is a quick way to "brush up" on specific jobs, to develop improved techniques or to find fast answers to puzzling service problems. Includes invaluable "step-by-step" troubleshooting charts that show what to look for and where. 820 pages, 417 illustrations, price $\$ 10.00$ separately.

## 2-Radio and Television Receiver CIRCUITRY AND OPERATION

This 669 -page volume is the ideal guide for servicemen who realize tt pays to know what really makes modern radio-TV receivers "tick" and why. Gives a complete understanding of basic circuits and circuit variations; how to recognize them at a glance; how to eliminate guesswork and useless testing in servicing them. 417 illus. Price separately $\$ 9.00$.
Special low price . . . you save $\$ 2.00$ If broken into lessons and sent to you as a "course," you'd regard Under this new offer, you buy both $\$ 100$ or more.
Under this new offer, you buy both books for only $\$ 17.00 \ldots$ you you use them! No lessong to wait for. You learn fast-and right
-"=-STUDY 10 DAYS FREE!-=-

## Dept. MH.90, HOLT, RINEHART \& WINSTON, INE.

Technical Div.', $\mathbf{3 8 3}$ Madison Ave.,
New York 17, N. Y.
Send books below for 10 -day FREE EXAMINATION. In 10 days I will either remit price indicated (plus postage) or return oon
Radio \% TV Receiver TROUBLESHOOTING a REPAIR (Price - \$10.00 separately)
a Radio \& TV CIRCUITRY \& OPERATION (Price \$9.00)
$\square$ Check here for MONEY-SAVING COMBINATION OFFER price of only $\$ 17.00$ for the two of above big books at special you save $\$ 2.00$.) Payable at rate of $\$ 8$ plus price $\$ 19.00$. days if you decide to keep books and $\$ 3$ a month for 3 months until the total of $\$ 17.00$ has been paid.
SAVEI Send cash with order and we pay postage. Same return privilege with money promptly refunded.

Name
Address
City, Zone, State
Outside U.S.A.- $\$ 10.50$ for TROUBLESHOOTING \$9.5O for CIRCUITRY \& OPERATION; \$18.OO for both. Cash in 10 days


Here's a handbook that contains the 25 most popular wheeled projects ever published in Science and Mechanics Magazine-each project completely detailed as to plans, four of them presented as fold-out blueprints! At your newsstand, or send 75¢ for Handbook No. 568 to Science and Mechanics, Dept. 353, 450 E. Ohio St., Chicago 11.

## Buying a New or Used Car?



## Protect Yourself

 with a ChecklistMake sure you know what you're getting-and what you're paying-compare deals, break down optional equipment costs, new and used car charges and financing terms with the Car Buyer's Checklist. A packet of 8 four-page, money-saving Checklists for $\$ 1.00$.

## SCIENCE AND MECHANICS

450 East Ohlo St.
Dept. 714
Chicago 11, III.

## INVENTORS PROTECT YOUR PATENT <br> With New patent sales agreement

Now you can sell your patent and be SURE you are protecting your interests 100 percent. Prepared by the Dean of a leading law school, this S\&M Patent Sales Contract will help you protect yourself and make sure you or your attorney overlooks no detail. Not a blank, but a true, TESTED Sales Contract that will protect your earn-
tract that will protect your earn-
ings and interests. Send today
for a copy of our Patent Sales Agreement.

SOLD EXCLUSIVELY BY
SCIENCE \& MECHANICS MAGAZINE
450 East Ohio Street, Dept, 419, Chicago 11, IIInols
 ALL PHASES, including Servicing, Manufacturing, Broadcasting and Communications, Automation, Radar, Government Missile Projects.

NATIONAL SCHOOLS SHOP-METHOD HOME TRAINING, with newly added lessons and equipment, trains you in your spare time at home, for these unlimited opportunities, including many technical jobs leading to supervisory positions.
YOU LEARN BY BUILDING EQUIPMENT WITH KITS AND PARTS WE SEND YOU. Your National Schools course includes thorough Practical training-YOU LEARN BY DOING! We send you complete standard equipment of professional quality for building various experimental and test units. You ad vance step by step, perform more than 100 experiments, and you build a complete TV set from the ground up. that is yours to keep! A big, new TV picture tube is included at no extra charge.
EARN as you learn. We ll show you how to earn extra money right from the start. Many of our students pay for their course - and more - while
 any school. Expert, friendily instructors. Personal attention. Graduate Employment Service. Heip inh witle home near school hox in coupon for full information.

LESSONS AND INSTRUGTION MATERIAL ARE UP.TO-DATE, PRACTICAL, INTERESTING. Every National Schools Shop-Method lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own Resident School Shops. Laboratories and Studios.
SEND FOR INFORMAIION TODAY . . . it can mean the difference between SUCCESS and failure for you! Send for your FREE BOOK "Your Future in Television-Radio-Electronics" and FREE Sample Lesson. Do it TODAY, while you are thinking about your future. It doesn't cost you anything to investigate!

## GET THE BENEFITS OF OUR OVER

 50 YEARS EXPERIENCE
## YOU GET...

- 19 Big Kits-YOURS TO KEEP!
- Friendly. Instruction and Guidance
- Job Placement Service
- Unlimited Consultation
- Diploma-Recognized by Industry
- EVERYTHING YOU NEED FOR SUCCESS:

SHOP-METHOD HOME TRAINING COVERS ALL PHASES OF INDUSTRY

1. Television, including Color TV
2. Radio AM \& FM
3. Electronics for Guided Missiles
4. Sound Recording and Hi-Fidelity
5. FCC License
6. Automation and Computers
7. Radar \& Micro-Waves
8. Broadcasting and

Communications

 your 'BB Shot' and fire against this magazine. Notice that it drives BB's through more than 100 pages. Though only $2^{\prime \prime}$ long $\times 1^{\prime \prime}$ in diameter, this pocket-size device has amazing power and accuracy. Use it for targets, pests and hunting. Scientifically designed for high power, operating ease and safety.
FREE! Get the 'BB Shot' now-we'll include an extra Velocity penser: Cone and FREE Target, BB's and Automatic BB DisBack Guarantee. Not sold to N. $\mathbf{Y}$. C. residents or minors. GRAYSON PROD., ING., Dept.B-12,210Fifth Ave., N.Y. 10, N.Y. MONEY-BACK
 gUARANTEE City .............State. .

## ELECTROSTATIC GENERATORS

 NOW-3 Models-150,000 250,000 and 400,000 VOLTS

Build your own Laboratory Model electrostatic generator described in Science \& Mechanics. These renerators have been scientifically tested and produce charges up to 150,000 , $\mathbf{2 5 0 , 0 0 0}$, or 400,000 volts depending on the
kit. More powerful than units many times kit. More powerful than units many times
larger. Ideal for Schools, Laboratories, Physlarger. Ideal for Schools, Laboratories, Phys-
ies and Science projects and all experimental ics and Science projects and all experimental
purposes using static electricity. Used by many leading companies and colleges.
Kit, complete and ready for easy assembly, all parts machined and drilled. Includes base, electrical parts and hardware. (For information on 400,000 volt kit, write for circular. 150,000 volt kit- $\$ 27.95$ postpaid. 250,000 volt kit- $\$ 32.95$ postpald. Send U. S. Postal Money Order or check. Please, No CoD's.

FOREST PRODUCTS, ING.
Dept. RT.9
131 Portland Street
Cambridge, Massachusetts
New Ram Jet Engine Burns Gasoline!
 POWERFUL' ELECTRIC GENERATOR

Cost U. S. Gov"t $\$ 20.001$ Whlle They Last Only $\$ 3.95$ Cenerates Up To 100 Volts. to ring bells, light up lights, as a medical battery, deliver terrific electric shock as joke, many electrical experiments, classroom uses, etc. Brand new Army surby leading electrical companies. Each ha powerful alntco magnets (alone worth more than total cost), generating armature, wire leads, gear crank, ready for use. Postpaid $\$ 3.95$.
Underwater Electronic Detector
Gov't Surplus. Cost $\$ 200.00$; $\mathbf{~ S e c i a l} \$ 7.95$
 Gov't Surplus. Cost $\$ 200.00 ;$ Special $\$ 7.95$. Brand new. Use as
detector or use parts for other devices such is detector or use parts for other devices such as mike, pick-up, $\$ 7.95$
te. Wt. 30 lbs . F.O.B. Detrit, Only,



## THE 1960 EDITION

Everyone interested in saving money on his car's running costs will want a copy of Car Repair Handbook. In it, 18 easy-to-follow servicing articles show you how to do it your-self-tune up the engine, service the distributor, fix a balky choke, repair faulty brakes, etc. In addition, there are scientific test reports on the Big 3 compacts, the Italian Fiat, the English Hillman, and the diesel Mercedes-Benz. PLUS a detailed, tear-out blueprint for a parking-lot speed cart. For your copy send 75 f for Handbook No. 566 to Science and Mechanics, Dept. 348, 450 E. Ohio St., Chicago 11.

## SEND TODAY FOR YOUR COPY

## Toys and Games You Can Make

- If the high cost of giving is getting you down, get a copy of Toys and Games You Can Make, a book containing detailed plans and building in. structions for over 80 different toys, games and playthings. Ideal for gifts to children-children from two to twenty-the construction projects in this book will save you money while you enjoy yourself making them. Toys and Games You Can Make (No. 556) is available in a deluxe, rugged, special hardbound edition for your shop reference library from Dept. 512, SCIENCE AND MECHANICS, 450 East Ohio Street, Chicago 11, Illinois. \$1.95.

The
Handiest Thing Since
Electricity
instructional material. You wilt receive training for the Novice, Technichan and Generare wave Generator, Code Amateur Licenses. Tracer and Signal injector circuits, and fearn how to operate
Oscillator, Signal Trace,
will Absolutely no previous knowledge of radio or science is required. The "Edu-Kit' "Edu-Kit" will proproduct of many years of teaching and engice and Radio, worth many times the complete vide you with a basic education $\sin$, Thectronics and more, than the price of the entire Kit-
price of $\$ 26.95$. Thal

## THE KIT FOR EVERYONE

You do not need the slightest background in radio or science. Whether you are interested in Radio \& Electronics because you want an interesting hobby, a well paying
business or a job with a future, you will find business or a job with a future, you whtment.
ages and backgrounds have successfulty used the "Edu-Kit" in more than 79 councarefully designed, step by step, so that you cannot make a mistake. The "Edu-Kit" allows you to teach yourself at
rate. No instructor is necessary.

## PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-Kit", is the foremost educational radio kiting the "Edu and is universally accepted as the standard in the field of electronics therefore you construct, Kit' uses the modern educaton, practice trouble-shooting-all in a elosely integrated pradio. gram designed to provide an easily-learned, thorough and interesting., You then learn the You begin by examining the various rad. Then you build a simple radio. With this first function, theory and wiring of these parts.
set you will enjoy listening to regular broadcast stations, learn theory, practice testing set you will enjoy listening to regular broadcast stati radio, learn more advanced theory
and trouble-shooting. Then you build a more advanced rat and at own rate, you will and trouble-shooting. Gradually, in a progressive manner, and at your own rate, you with find yourself constructing more
professional Radio Technician, course are twenty Receiver, Transmitter, Code Oscillator, Included in the "Edu-Kit' course are twenty Neceiverircuits. These are not unprofessignal Tracer, Square Wave Generator and genuine radio circuits, constructed by means of professional wiring and soldering on metal chassis, plus the new our regular AC or DC house tion know
current

## THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build 20 different radio and elecronics circuits, each guaranteed to operate. Our Kits contain tubes, tube sockets, varis, able, electrolytic, mica, ceramic and paper dieiectric conction Manuals, hook-up wire, solder, hardware, tubing, purched controls and switches, etc. including Printed circuit chassis, selenium rections, you receive Printed circuit materials, inciuding Printed circuit chassis, special tube sockets, hardware and instructions. You also receive a radio and Electronics speciassional electric soldering iron, and a self-power
profer the Progressive Code Ostillator,
Tester. The "Edu-Kit" also includes code Instructions and the Tester. The "Edu-Kit"' also includes Code Answers for Radio Amateur License training. You
in addition to F.C.C.type Questions and in addition to F.C.C.-type Questricing with the Progressive Signal Tester and the Progres-
will also receive iessons for servin will also receive lessons for servelity Guide and a quix Book. You receive Membership in
sive Signalinjector, a High Fidelity sive Signa Club, Free Consultation Service, Certificate of Merit and is Everything is yours to keep.

## FREE EXTRAS

## SET OF TOOLS

- SOLDERING IRON
- ELECTRONICS TESTER - PLIERS CUTTERS

VRENCHLEETISCOUNT CARD CERTIEICATEE OFMERTMANUAL
 TROUBLE-SHOOTING BOOK
MEMSERSHIPIN RADIO-TV CLUB CONSULTATION SERVICEGIFG AMATEUR LICENSEE

## SERVICING LESSONS

You will learn trouble-shooting and servicing in a progressive manner. You you construct. You will learn symptoms and causes of troubles in home, portable and car radios. You will learn how to use the professional Signal Tracer, the unique signal injector and the dynamic are learning in this practical way, you will be able to do many a repair job for your friends and neighbors, and charge fees which will far exceed the price of will help you with any technical problems

## FROM OUR MAIL BAG

J. Stataitis, of 25 Poplar Pl., Waterbury, conn., writes: 'ril have repared made several sets for my friends,
money. The 'Edu-Kit' paid for itself. I money.
was ready to spend $\$ 240$ for a course,
but found your ad and sent for your Kit." Ben Valerio, p. O. Box 21, Magna, tam sending Edu-kits are wonderful. Here the sending you the questions and also Radio for the last seven years, but like
to work with Radio Kits, and like to to work with Radio Testing Equipment. I enjoyed every minute worked with the different kits: the signal Tracer works
fine. Also like to let you know that eel proud of becoming a member of your $\begin{aligned} & \text { Radio-TV Ciub. } \\ & \text { Robert } \\ & \text { Shuff, } \\ & 1534 \text { Monroe Ave., }\end{aligned}$ Huntington, w. Va.: "Thought i would drop you a few ines to say that rethat such a bargain can be had at such pairing price. I have already started re: pairing radios and phonographs. My get into the swing of it so quickiy. The roubleshooting Tester that comes with the Kit is really swell, and finds the

## PRINTED CIRCUITRY

At no Increase In price, the "Edu-Kit", now includes Printed Circultry. You build a Printed Circuit Signal Injector, a unique servlcing instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets. A Printed Circuit Is a speclal insulated chassls on which has been de. posited a conducting material which takes the place of wiring. The various parts are merely piugged in and soldered to terminals.

Printed Circuitry Is the basis of mod. ern Automation Electronics. A know edge of this subject is a necessity today for anyone interested in Electronics

## ORDER DIRECT FROM AD-RECEIVE FREE BONUS RESISTOR AND CONDENSER KITS WORTH 97

[] Send "Edu-Kit" postpaid. I enclose full payment of $\$ 26.95$.
$\square$ Send "Edu-Kit" C.0.D. I will pay $\$ 26.95$ plus postage.
[] Send me FREE additional information describing "Edu-KIt."
Name
Address
PROGRESSIVE 'EDU-KITS'" INC.
1186 Broadway, Dept. 507NN, Hewlett, N. Y.

## NOW—Get this expert SELF-TRAINING in RADIO SERVICING

## by ABRAHAM MARCUS


co-author of famous "Elements of Radio" which has sold over $\mathbf{8 0 0 , 0 0 0}$ coples!
Here is every detail you need to know about radio stand, step-by-step self-training handiook shows you Covers.
Covers: Transistor Radios; Hi-Fi Amplifiers and Re. celvers; Hybrid Automobile Receivers; A-M and F-M tors; Power Supplies portable Receivers; Semi-Conduc. Motor-Generatops. ete. Tells from AC Hoc, Bateries, of: Electron Tubes ete Tiode. Triode, Pentode, Beam power Thyratron, Phototube. Cathode Ray, etc., ; Rectifier cir etc.). Detector Circuits (Diode Bridge, Voltage-Doubler, Superregenerative, Infinite-impedance, Regenerative, Circuits (Audio, Radio, I-F, Video, D-C, ete).; Amplifier Vibrator, (Hartley. Colpitts, Crystal, Transitron MultiAVC, DAVC. Tone, Noise-Suppressiol Circuits (Volume, ing. Automatic Frequency Control, etc.). Automatic Tun-
Explains how to use testing instruments, such as:
meter, vacuum-tube voltmeters, ohmmeters, bridres; multimeters, signal generators, tube, bridges, cathode-ray oscilloscopes, ete. Over checkers, and 69 illustrations in this section alone!
Get this authoritative radio repair handbook today! Coupon below brings you "Radio Servicing', on FREE trial for 10 days. Mail it
NOW. All in one big vol${ }_{121} \quad$ Big $\quad$ Shapters. "Show-How,' ${ }^{400}$ grams.
of
practical $\begin{aligned} & \text { pages } \\ & \text { radio }\end{aligned}$

[^1]
## WHERE TO FIND



## GEE HUNTEP'S GUDE

## SCIENCE and MECHANICS, Dept. 115 <br> 450 East Ohio St., Chicago 11, Illinois

Please send me-for 5 days' FREE EXAMINATION-a copy packed with maps, full-color photos 188 -page hardbound book and where to find gems. Unless completely ert adrice on how I may return it in 5 days and owe nothing satisfied with book keep it and send you $\$ 3.95$, plus 506 to cover postage and

NAME
ADDRESS
CITY ..
STATE
ZONE. ........
$\square$ SAVE Money! Enclose only $\$ 3.95$ WITH this coupon. privilege for full refund applies if not satisfied. 5 -day return

Censational Clearance! $N$ 血 $33_{c}$ EACH 3
3

## LIMITED QUANTITY HOW-TO-DO-ITS

Here's a Clearance Sale with a capital $S$ for savings! While they last, the following 50c how-to-do-it handbooks are being offered at just 33c each-a $331 / 3 \%$ reduction. For $\$ 2.00$ you can get all seven-and save $\$ 1.50$, a savings of over $40 \%$ ! So ACT NOW!
526 CRAFTWORK Vol. 3
Covers woodcarving, silversmithing, puppet making, picture framing, ceramics, jewelry making, plus a complete course in leathercrafting; scores of projects.
528 PHOTO CRAFTSMAN
How to make your own photographic equipment-flashguns, boom light, enlargers, timer, strobograph, speedlight, titler- 90 projects in all.

## 529 SPORTS CRAFT

How to select, make, improve, use and care for sports equipment-guns, fishing tackle, archery equipment, golf clubs, tennis rackets, boats and motors.
533 MODEL CRAFT HANDBOOK
Over 30 model projects-farnous historic firearms, circus equipment and animals, control and free-flight airplanes, power boats, transportation models and engines.
541 CRAFTWORK Vol. 4
Over 50 projects, with special sections on pottery and ceramics, woodcarving, leathererafting, wrought iron work, how to make simple book repairs.
542 HOME ELECTRICAL HANDEOOK
Plans for a dozen practical projects; instructions for cash-saving repairs to appliances; complete, detailed guide to rewiring your home.
543 SPORTSMAN'S HANDBOOK
How to repair sports equipment, make new equipment.
Plans for hunting crossbow, aquaplanes, powercycle, six action-tested boats. Includes camp craft, basic navigation course.
SAVE MONEY! Order any of the above titles at
$33 C$ each, all seven for $\$ 2.00$. Rush Coupon Today.

## SCIENCE and MECHANICS, Dept. 355 <br> <br> 450 East Ohio St., Chicago 11, Illinois

 <br> <br> 450 East Ohio St., Chicago 11, Illinois}$\square \begin{gathered}\text { Enclosed is } \$ \\ \text { books whose }\end{gathered}$
Please send me the how-to-do-lt baoks whose numbers I have circled:
$\begin{array}{llllll}\square & 528 & 529 & 542 & 542\end{array}$
$\square$ Enclosed is $\$ \mathbf{2 . 0 0}$. Send me all seven books.
NAME
ADDRESS
CITY
ZONE
STATE


## In RESIDENT CLASSES

Grantham resident schools are located in four major cities-Hollywood, Seattle, Kansas City, and Washington, D.C. Regularly scheduled classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nights a week and prepare you for a first class license in 20 weeks. For more information about the Grantham resident schools, indicate in the coupon the city of your choice and then mail the coupon to the School's home office in Hollywood, Calif. Free details will be mailed to you promptly.

Grantham training is the easy way to learn more quickly - to prepare more thoroughly - for F. C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

This correspondence course is directed toward two major objectives - (1) to teach you a great deal about electronics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commer-
cial operator's license. We teach you step by step and cial operator's license. We teach you step by step and have you practice with FCC-type tests which you send to the school for grading and comment. You prepare for your F.C.C. examinations under the watchful direction of an instructor who is especially qualified in this field.

## ELECTRONICS

GET your first class commercial

## Through <br> HOME STUDY



To get ahead in electronics - first, you need the proper training; then, you need "proof" of your knowledge. Your first class commercial F.C.C. license is a "diploma" in communications electronics, awarded by the U.S. Government when you pass certain examinations. This diploma is recognized by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.
Grantham training is offered in resident classes or by correspondence. Our free booklet gives complete details. If you are interested in preparing for your F.C.C. license, mail the coupon below to the School's home office at 1505 N . Western Ave., Hollywood 27, California-the address given in the coupon - and our free booklet will be mailed to you promptly. No charge - no obligation.

Get your First Class Commercial F.C.C. License by training at


# Howto Find a Buyer for Your Invention 

## LISTS HUNDREDS OF NEEDED INVENTIONS

A manufacturer in Chicago is eager to A manufacturer for new plastic toys or pay good monventions with wide appeai.

A large company in St. Louis assures big cash rewards for idealies. A Boston relating to paint specialit of gross sales company paysinvenadgets and inventions for new ldeas argamobile, or garden. An for the home, aum will pay big money for electronics firm toimprove TV reception. new accessories a fuest a few the hundreds These are just a few of by 140 top manof needed inventionsmanufacturer lists the ufacturers. Each manus he is interested exact type on company executive towrite in buying, andiate action. FOUR complete to for immediate lists give you this valucross -indextion to guide you:
able informstion "A"| Cross Index "c" Cross Index

-lists handreds of - enables you to lo| -lists hno |  |
| :--- | :--- |
| $\begin{array}{ll}\text { needed inventionsand } \\ \text { tupes of products for }\end{array}$ | $\begin{array}{l}\text { cate the manufactar- } \\ \text { ers with the thpe of }\end{array}$ |
| equipment needed for |  | needed invenure for

tupes of products for tupes of produchents
which are wanted.
Cross Index "B" -gives listing of ma-
terials each manafacterials each manafac-
turer uses in current production.
equipment needed $\begin{aligned} & \text { producing your idea. }\end{aligned}$ producial ydex "D" - lists facilities for developing. producing, and marketing yous
inventions.

## How to Find a Buyer for Your Invention

NOW: A Brand-New Guide-by the Editors of Science and Mechanics Magazine-Tells You Exactly HOW, WHEN, and WHERE to Find a Buyer for Your Ideas or Inventions. Tells You Everything You Need to Know to-

## Turn Your Big Ideas into Big Money!

NOW when you get an idea you think may be worth thousands of dollarsa brand-new product wanted by everybody; a way toimprove a product already in use; a lower-cost, easier method of servicing, making, or doing something-you can know exactly HOW and WHERE to cash in on it and make big profits.
Big brand-new guide, How to Find a Buyer for Your Invention,"'reveals hundreds and hundreds of needed inventions in every type of business. Lists 140 manufacturers who are eager to buy inventions (patented or unpatented)...and pay top cash. Tellsyou WHO to contact and HOW to sellhelps you get the most cash or royalties for your ideas or inventions!

## Why So Many

## Inventors Fail

Few inventors know bow to "cash in" on theirideas. Somespend their entire lives literally sitting on a gold mine without ever getting to the right man in the right firm who could turn the trick for them, easily-quickly. The secret of selling your invention - and your shortcut tosuccess as an idea man -is in knowing WHERE your ideas are actually needed, and HoW tocontact the man who will say "Yes-BUY!" That is exactly what the editors of Science and Mechanics Magazine have now made it easy for you to do. Their

## Tells You Step-By-Step Exactly How To- <br> HOW to Determineif <br> direct to a manufacturer; <br> your patent application

Your Idea or Invention is Salablea Saves yoution money, and heartbreak by telling you BEFOREHAND how to find out whether your big ide a is marketable, 7 cuestions and answers tell you whether someone will pay good money for your idea.
WHERE to Sell Your InVentions Complete, up-to-me-minute list of 140 big manufacturers actively tions. Details their specific needs; facilities available; name and address of official to contact.
EIGHT Different Ways to Sell an Invention. Tells sell sour idea or invention
through a patent broker; classified ads; publicity and news releases; at exgineering societies by en ginw How to Find Outif Your Idea orInvention is Patentable: Values of a pat ent, commercial search, etc. How a patent protects you. How to use it to your advantage when making a sales presentation
WHEN to Sell Your Invention: Why the time of selling is so important. Pitfalls to avoid.
SIX Ways to Interest a Prospective Buyer: When and WHEN NOT to use a working model. Valuable hints on drawings and descriptions. How
can be a sales "clincher." Step - by - step directions for preparing a DISCLOSURE FORM that will win favorable attention. PATENT Brokers, Sales Agents: How to select a Patent Broker. How to be your own Patent Broker. Advantages and Limitations of Free Invention Selling Services.
HOW MUCH Is Yourinvention Worth?: How to get maximum royalties or outright fees for your idea. ALSO How to sell "Nifty or Novel' ideas to Magazines. How "Free Publicity" Can Sell Inventions for You. Danger in Signing Releases and Assign-ments-and MUCH more!

## Manufacturers! <br> Are You Looking Ideas, Improved Processes, New Inventions? If so, writeus for fall how your firm can be isted-FREE-jn this brand-new inven- tor's guide. Your firm name will be included ina supple. mental list of manufacturers, available upon request to ali don request to all Durchasers of the curreat edition.

brand-new guide, published after years of exhaustiveresearch, helps you get the right contact in the right firm. It lists hundreds of inventions urgently needed by top manufacturers. Tells you the actual name and title of the man to con tact in each firm to make a quick sale!

## The Most Successful Sales Gaide

 Ever Published for InventorsFOUR complete cross-indexed lists tell you what you need to know to locate your best prospects and make the most money. You know beforehand which manufacturers have the best facilities to make your product.
"How to Find a Buyer for Your Invention" more than guides you every step of the way in making the sale. You learn 8 tested methods of selling inventions; 6 sure-fire ways of gaining the immediate interest of prospective buyers. An exclusive copyrighted Disclosure Form (alone worth more than the low cost of the book) enables you to include all the vital information needed about your invention to make a favorable impression.

Answers your questions about patent brokers, free invention selling services. Gives you a seven-point test by which you can tell whether your idea is salable. Outlines risks involved in selling ideas and tells how to avoid them. Tells what to do about models, plans, drawings, how to prepare a Sales Portfolio-and much more!

## SEND NO MONEY

- Examine Guide FREE for 5 Days! Just mail coupon below and we will rush you a copy of "How to Find a Buyer for Your Invention"to examine FREE for five days. If not convinced that it is worth many times its low cost, simply return it and owe nothing. You don't risk a penny.


## MAIL GOUPOL NOUT

SCIENCE and MECHANICS MAGAZINE, Dept. 420
450 East Ohio Street, Chicago 11, Illinois
Please send me-for 5 days' FREE EXAMINATION -a copy of "How to Find a Buyer for Your Invention." Unless completely satisfied with book I may retarn it in 5 days and owe nothing. Otherwise I will keep it and send you only $\$ 2.95$, plus 25 e to cover post-
age and handling. age and handling.

Name.
Address
City, Zone \& State.
SAVE Money! Enclose only $\$ 2.95$ WITH this coupon. Then WE will prepay ALL delivery charges. Same 5 -day return privilege for full refund applies. <br> \title{
Electric <br> \title{
Electric HYPNOTISM HYPNOTISM MACHINE
} MACHINE
}

EYPNOIIZE

## WITH THESE EXCITING AIDS! Designed for Beginners and Professionals

Plug in - put this effective machine to work for you. The $10^{\prime \prime}$ Hypnotic Spiral disc revolves at 59 rpm, causing tremendous eye-fixation and hypnotic motion that seems to bring your subjects into a "deep well of sleep". Treasured by Professional Hypnotists and serious students alike, it is effective visually and creates prestige that is so very important. Use it for Self-Hypnosis and to hypnotize others - in groups or individually. Has an $8^{\prime}$ electric cord, on-off switch, carrying handle and a fine quality 110 V AC motor. Complete with disc and simple instructions.
\#CX-1 . . $\$ 13.95 \mathrm{ppd}$.

\#CX-3 . . $\$ 18.95$ ppd.


## ELECTRONIC METRONOME

Combines 2 trance stimulating effects: Flashing light (framed by a hypnotic disc) and a Metronome beat. Completely adjustable - speeds from 40 to 208 beats per minute. Sound and tone from a loud click to a low hollow tap. Completely automatic - a precision instrument $41 / 4^{\prime \prime}$ wide x $51 / 2^{\prime \prime}$ high.

## MECHANICAL HYPNOTIST

A fascinating device that folds up and can be carried in your pocket. There is a design printed on the front acetate window and another on the rear "out of focus" disc. By revolving the disc you create a variety of trance stimulating, eye-arresting patterns. Complete with an informative book of instructions and revealing secrets.
\#cX-5 . . \$1.95 ppd.

## NEWPOCKET SIZE INVENTION HELPS

 HYPNotize YOURSELF or OTHERS IN MINUTES!MUST WORK OR MONEY BACK!
Hold the mypno-coin in front of the person you want to hypnotize. Gently vibrate the plastic lense. Thas sets a whirling hypnotic pattern into motion that is so fascinating, it captures and holds your subject's gaze. Now give your hypnotic suggestions! Get this amazing hypnotic aid complete with a FREE. revealing bookiet of secrets and instructions inctize tell you what to say and do, how to command and re-hypnotize with the snap of a finger. how Hypnotic stunts. onty $\$ 1.00$ ppd. Sent in a plain wrapper. Money back if not delighted.
\#CX-8 . . . $\$ 1.00$ ppd.

FREE!IF YOUR ORDER TOTALS $\$ 10.00$ OR MORE YOU GET THE "HYPNO-COIN" FREE!
 CONTINUOUS WAVE OF RADIO ENERGY. WHEN THIS ENERGY STRIKES AN OBJECT IN SPACE IT IS REFLECTED AND RECEIVED BY THE RECEIVING STATIONS
ply a matter of mathematics to calculate the

JANUARY 1960. A dark satellite circles the Earth, its origin unknown. The space vehicle, transmitting no signal-at least no signal audible in the Western worldshould have remained undetected, but didn't. Why not? The reason is SPASUR, a new electronic device built by Bendix Radio for the United States government.
Such an important new system should involve some sweeping new discovery-but that doesn't happen to be the case. SPASUR makes use of two very well known principles of radio reception, proving again that what man does with his discoveries is even more important than the discoveries themselves.

First part of the SPASUR system consists of a VHF transmitter fed into a non-directional antenna. VHF signals are not normally reflected back to Earth unless they happen to strike a solid object. This is precisely what happens when the SPASUR (SPAce SURveillance) transmission strikes an object in space. Once the reflected signal is picked up by a properly equipped receiving station, position and attitude are determined.

Each SPASUR chain consists of a transmitter and two receiving locations, 250 miles either side of the transmitter. Thus the chain is spread out along a 500 mile strip (see Fig. 2). There are presently a pair of chains operating, centered on Jordan Lake, Alabama, and Gila River, Arizona. A satellite orbiting the Earth must eventually pass within range of at least one of these chains.

At a receiving station, the bearing is first taken and then the angle between signal and Earth is measured. From the latter, it is sim-
altitude. The angle of arrival is indicated by the phase difference between two parallel antennas. Again this method is nothing new, it's been used for many years in short-wave research. However, when applied to SPASUR it is much more accurate since signals arrive via only one path while on short-wave multipath reception is common.

The received data is fed into a computer and after three sightings both course and speed are revealed. Working with MINITRACK, another Bendix system which keeps tabs on broadcasting satellites, SPASUR provides a complete picture of "nearby" (near Earth) space activities.-C. IM. Stanbury II


The approximate positions of the six stations of the U. S. Navy Space Surveillance deiection net. The stations are divided into two complexes (eastern and western), each consisting of a transmitting station and two receiver stations. The stations are located along a great circle track between Fort Stewart, Georgia, and the Naval Air Station, Brown Field, just south of San Diego, California.


## Cleveland Institute Announces an EXCLUSIVE Technician Training Program in Computers, Servo Mechanisms, Magnetic Amplifiers and others

Other advanced fields covered include Basic Math, A. C. Circuit Analysis, Pulse Circuitry, Color TV, Radar, Advanced Measuring Techniques, Industrial Electronics, Instrumentation, Automation, Radio Telemetry. Send for information today.

The Master Course in Electronics witl provide you with the mental tools of the electronics technician and prepare you for a First Class FCC License (Commercial) with a radar endorsement. When you successfully complete the Master Course, if you fail to pass the FCC examination, you will receive a full refund of all tuition payments.

## GET THIS HANDY POCKET ELECTRONICS DATA GUIDE

## THER

Puts all the commonly used conversion factors, formulas, tables, and color codes at your fingertips. Yours absolutely free if you mail the coupon in 30 days. No further obligation!
TO GET THIS
FREE GIFT, MAIL
COUPON Within 30 Days!

## Cleveland Institute of Electronics

4900 Euclid Ave.
Desk SM-6
Cleveland 3: Ohio



## Memorandum, 1915

## Subject: Radio Music Box

N 1915, David Sarnoff was Assistant Traffic Manager of the Marconi Wireless Telegraph Company of America. In September of that year he sent to the Vice President and General Manager of the company the following memorandum:
"I have in mind a plan of development which would make radio a 'household utility' in the same sense as the piano or phonograph. The idea is to bring music into the house by wireless.
"While this has been tried in the past by wires, it has been a failure because wires do not lend themselves to this scheme. With radio, however, it would seem to be entirely feasible. For example-a radio telephone transmitter having a range of, say, 25 to 50 miles can be installed at a fixed point where instrumental or vocal music or both are produced. The problem of transmitting music has already been solved in principle and therefore all the receivers attuned to the transmitting wave length should be capable of receiving such music. The receiver can be designed in the form of a simple 'Radio Music Box' and arranged for several different wave lengths, which should be changeable with the throwing of a single switch or pressing of a single button.
"The 'Radio Music Box' can be supplied with amplifying tubes and a loud speaking telephone, all of which can be neatly mounted in one box. The box can be placed on a table in the parlor or living room, the switch set


[^2]accordingly and the transmitted music received. There should be no difficulty in receiving music perfectly when transmitted within a radius of 25 to 50 miles. Within such a radius there reside hundreds of thousands of families . . .
'The manufacture of the 'Radio Music Box' including antenna, in large quantities, would make possible their sale at a moderate figure of perhaps $\$ 75.00$ per outfit. The main revenue to be derived will be from the sale of 'Radio Music Boxes' . . ."
Hindsight tells us Marconi Wireless should have seized opportunity by the antenna. Instead, they ignored the memo. Five years later, after the Radio Corporation of America was organized, Sarnoff pulled his copy of the memo out of his files and revived his recommendation of 1915 in a report to Owen D. Young, Chairman of the Board of the new company.
Four weeks later, on March 3, 1920, Sarnoff was asked for an estimate of prospective radio business. He replied:
"The 'Radio Music Box' proposition . . . requires considerable experimentation and development; but, having given the matter much thought, I feel confident in expressing the opinion that the problems involved can be met. With reasonable speed in design and development, a commercial product can be placed on the market within a year or so.
"Should this plan materialize it would seem reasonable to expect sales of one millian ( $1,000,000$ ) 'Radio Music Boxes' within a period of three years. Roughly estimating, the selling price at $\$ 75$ per set, $\$ 75,000,000$ can be expected. This may be divided approximately as follows:
First Year

> 100,000 Radio Music Boxes... . \$ 7,500,000

## Second Year

300,000 Radio Music Boxes. . . 22,500,000
Third Year
600,000 Radio Music Boxes. . . $45,000,000$
RCA's actual sales of "Radio Music Boxes" during the first three years of its activities in this field, were:
1st year. . . . . . . . . . 1922. . . . . . . . . . $\$ 11,000,000$
2nd year. . . . . . . . 1923. . . . . . . . . . 22,500,000
3rd year. . . . . . . . . . 1924. . . . . . . . . . 50,000,000
Total. . . . . . . . . . . . . . . . . . . . $\$ 83,500,000$ Broadcasting had been born.


## Up To 75\% OFF on BRAND NEW TUBES

GUARANTEED ONE FULL YEAR! You Can Rely On Rad-Tel's Speedy One Day Service!
Not Used - Not Pulled Out Of Old Sets - Each Tube Individually and Attractively Boxed!
aty. Type Price |aty. Type Price $\left.\right|^{\text {atty. Type Price }}{ }^{\text {atty. Ty }}$


## "All personnel. .

clear the firing area . . . stand by for countdown. . .


## YOU MAY HANDLE A SITUATION LIKE THIS...

## If you measure up to the Aerospace Team

A man in this situation requires cool judgement and an aptitude for advanced technical training. This is the kind of man who can measure up to the qualifications of the U. S. Air Force. He is the kind of man who can build a career in the Aerospace Age that will be meaningful and rewarding.

Are you that man? As a trained and experienced Air Force technical specialist, you
will have the opportunity to work with the intricate equipment of the Aerospace Age-the age of air and space travel. You will enjoy steady advancement and solid security. And you will be superbly prepared for the future.

If you would like to learn more about the many unique advantages that go with a career in Air Force blue, fill in and mail this coupon today.

## U.S. AIR FORCE

There's a place for tomorrow's leaders on the Aerospace Team PASTE COUPON ON POSTCARD AND MAIL TO:
Airman Information, Dept. MRT09, Box 7608, Washington 4, D. C.
Please send me more information on my opportunities in the U.S. Air Force. I am between the ages of 17.34 and reside in U.S.A. or possessions.

## Name.

Address
City $\qquad$ Zone $\qquad$ County $\qquad$ State

# TWO-METER Amateur Station 

Compact and easy to build, this twometer station uses standard parts and tubes throughout, provides both voice and modulated code communication and may be used for portable operation

You can build this transceiver for less than half of what any similar, presently available commercial rig sells for.

by C. F. ROCKEY, W9SCH/W9EDC

OPEN to holders of all classes of amateur license, the 144 -megacycle, twometer amateur band offers interesting possibilities to the experimentally inclined ham. This little rig provides an excellent starting setup, or a nice little extra rig.
Begin construction by drilling and punching the major holes in the front panel and chassis (Figs. 2 and 3). Mount the panel temporarily upon the chassis while drilling the holes for the two potentiometers and the Re-ceive-Transmit switch. With all major holes drilled, mount the power transformer, then the rectifier tube socket and the Jones barrier terminal strip. Temporarily mount the regeneration control potentiometer upon the panel; it includes the On-Off power-line switch, which is wired-in immediately.

Now complete the power supply wiring (see Fig. 7) first connecting the transformer leads to the rectifier tube socket, then wiring in the $120-v$ primary leads. The electrolytic capacitors are held in place by their mounting brackets, as are the positive "hot" leads which are supported by a two-lug, insulated tie-point strip. Last of all, install and connect the filter choke. Ground one side of the 6.3-v heater winding and bring the other end out to one of the unused rectifier socket lugs, which will serve as a tie-point for connection to the heater of each of the tubes (except the rectifier, of course).

After you've wired and carefully checked the power supply, measure the resistance between the positive high-voltage terminal and ground. There should be more than 10,000 ohms. Less indicates a wrong connection, or short. When the high-voltage circuit has been checked out, connect the line cord to its terminals on the terminal strip and insert the rectifier tube in its socket. When the switch is turned on, the rectifier tube filaments should glow dull red and a de voltage of at least $250 v$ (more won't hurt) should be observed from the positive terminal of the last filter capacitor to ground.

Audio Section. When the power supply is operational, remove the rectifier tube and line cord and fasten in the sockets for the audio frequency section, including the 12AT7, half of which is used for an AF amplifier. (The other half is the crystal oscillator, which is wired-in later.) The AF section includes one and one-half 12AT7's, and the 6V6GT. The 12AT7 sockets are mounted with 4-36x $1 / 4$-in. rh machine-screws and nuts. Be sure to put a soldering-lug under one of the mounting screws for each socket to provide a ground point for that part of the circuit. Pin No. 9 on each 12AT7 socket, and pin No. 7 on the 6 V 6 GT are connected to the $6.3-v$ heater winding (ungrounded green lead) of the power transformer. Ground pins 4 and 5 on each 12AT7 socket, as well as the metal tube

in the center. On the 6V6 socket, ground pins 1 and 2.
Work backwards from the output transformer through the 6V6 (see Fig. 6). Ground the "common" terminal on the output transformer secondary; leave the other secondary terminal alone for the moment. The output transformer is mounted with 6-32 rh machine screws and nuts. When the 6 V 6 has been wired, temporarily connect the loudspeaker (between unused secondary lead and ground), insert the 6V6 and rectifier tube, plug in line cord and turn on power. Both tubes should light and, when warm, a screwdriver touched to pin No. 5 (control grid) of the 6V6 should produce a characteristic clicky buzz in loudspeaker.

With the audio output stage connected and operating, unhook external connections, remove tubes, and wire the 12AT7 stage that feeds the signal to the 6V6. Use 2 - and 4 point insulated tie-lugs as needed to hold small parts firmly in place by their leads.

After you've wired and checked this next stage, put in tubes, re-connect speaker and plug in line. When all tubes are warm, carefully touch a screwdriver to the control grid terminal (pin No. 7) of the 12AT7. A much louder clicky buzz should be heard.

To complete further AF circuit wiring, you'll have to temporarily install both the


Receive-Transmit switch and the volume control potentiometer. Figure 8 shows connections for the non-shorting type R-T switch. Continue wiring by completing the 12AT7 amplifier stage that serves the receiver (see Fig. 9). Make all ground leads short.

To test this stage, set up as previously described, throw the R-T switch to "Receive," and check for the characteristic buzz at the grid. Advance the volume control, of course. Because of the relatively high amplification involved here, it should be possible to hear a faint hiss of tube noise when the volume control is fully advanced.


Finish the AF section by wiring the 12AT7, "speech-amplifier" stage. This circuit contains the SPST toggle switch that converts it into an oscillating multivibrator for modulated CW work. When the switch is open the circuit acts as a multivibrator, or tone
generator. When closed, the stage becomes a grounded-grid amplifier for the mike.

Connect external connections, as previously described for testing, and insert all tubes involved. Connect a 220 K resistor temporarily across the Mike-Key terminals on the termi-

nal strip. When the toggle switch is in the open position, a loud, clean musical tone should emerge from the speaker. (Note that the volume control, since it is associated with the receiver only, does not affect the strength of the tone.)

Throw the togggle switch into the closed position and connect a single-button carbon microphone (Type "F-1," from Telephone Engineering Company, Simpson, Penn., or other similar single-button carbon mike) to the microphone terminals. Now, the system should

\footnotetext{

| No. Req'd MATERIALS LIST-2-METER ST |  |
| :---: | :---: |
| 1 | $2 \times 7 \times$ |
| $179 \times 10^{\prime \prime}$ aluminum panal | $7 \times 10^{\prime \prime}$ aluminum panel |
| 3 knobs for $1 / 4^{\prime \prime}$ sh |  |
| 1 National typ |  |
| 1 | tuning eye assembly for 6E5 tube (includes bracket, socket and bezel) |
| 1 | PM loudspeaker, $4^{\prime \prime}$ size Jensen |
| 1 | $23 / 4 \times 31 / 2^{\prime \prime}$ aluminum sheet, for detector (see text) |
| 3 | octal plastic tube sockets, Amphenol |
| 4 | 9 -pin miniature sockets, high frequency plastic insulation, Amphenol |
| 1 | 7-pin miniature socket, Amphenol |
| 1 | 6-terminal Cinch-Jones barrier terminal strip |
| 1 | SPST toggle switch, H\&H |
| 1 | 100K linear-taper potentiometer \& switch (Mallory) |
| 1 | 500K audio-taper potentiometer (Mallory) |
| 1 | power transformer, Chicago-Standard Type PM-8408 |
| 1 | filter choke, Chicago-Standard, Type C-1708 |
| 1 | output transformer, Chicago-Standard, Type A. 3823 |
| 2 | 10 mfd . electrolytic filter capacitors, 450 working volt, |
| 2 | 0.5 mfd. paper capacitors, 200 working volt, Cornell |
|  | Dubilier |
| 331 | Ohmite type $\mathrm{Z}=144,2$-meter RF chokes |
|  | National type XR-50 coil forms, with iron slugs |
| 1 | four-pole, double-throw, non-shorting wafer switch, Centralab No. 1409 |
| 1 | 15 mmf variable tuning capacitor, Hammarlund HF-15 |
| 1 | 15 mmf BUD variable tuning capacitor type MC-1850, with one plate removed (see text) |
| 1 | 47 ohm , one-watt carbon resistor |
| 8 | 100K one-watt carbon resistors |
| 2 | 47 K , one-watt carbon resistors |
| 4 | 22 K , one-watt carbon resistors |
| 2 | 2.2K, one-watt carbon resistors |
| 1 | 220K, one-watt carbon resistors (includes one extra for new operation) |
|  | 220 ohm, one-watt carben resistor |
| 1 | 470K, one-watt carbon resistor |
|  | 1 K , one-watt carbon resistor |
| $\frac{1}{5}$ | 1 meg., one-watt carbon resistor |
| 5 | $50 \mathrm{mmf}, 600$ W.V. disk-type ceramic capacitors |
| 8 | $5000 \mathrm{mmf}, 600$ W.V. disk-type ceramic capacitors |
| 2 | 5 mmf ., 600 W.V. disk-type ceramic capacitors |
| 3 | 1000 mmf., 600 W.V. disk-type ceramic capacitors |
| 1 | brass shaft coupling $V_{4}{ }^{\prime \prime}$ to $1 / /^{\prime \prime}$ shaft (female to female) |
| 1 | type 48, 2-volt, 60 -ma dial lamp bulb (for tuning) |
| 1 | 1N34 crystal diode, Sylvania |
| 1 | "overtone" crystal approximately 36 megacycles, Texas |
|  | Crystal Co., River Grove, III. |
|  | If you are a Generat class operator, you may select a |
|  | crystal anywhere between 36 to 36.975 megacycles. Novices |
|  | and Technicians must select one between 36.25 and 36.75 |
|  | Ma. If you wish a certain frequency within the 144-mega- |
|  | cycle band, divide that frequency by four to get your crystal |
|  | frequency. Ask for the adapters to adapt the pin diameter |
|  | to fit octal sockets pins. Texas Crystal Co. will supply |
|  | these gratis when requested in order. |
| 1 | line cord and plug |
| 1 pc | plastic rod 1/4" dia., $3^{\prime \prime}$ long |
| 1 | 5U4GB vacuum tube |
| 1 | 6V6GT vacuum tube |
| 3 | 12AT7 vacuum tube |
| 1 | 6AQ5 vacuum tube |
| 1 | 12BH 7 vacuum tube |
| 1 | 6E5 vacuum tube |
| 1 | microphone, carbon, type F-I (Telephone Engineering Co., Simpson, Penna.) |
| 1 | telegraph key (optional) Johnson Model 114-100 |
| 1 | directional antenna for $144-\mathrm{Mc}$. amateur band, (the 5 ele ment "Hi-Gain," or similar type is recommended.) With Co-axial transmission line and rotator wire, rosin-core solder, screws, nuts, tie-points, etc. |



8 BACK VIEW OF RECEIVE - TRANSMIT SWITCH (SWITCH SHOWN IN RECEIVE POSITION AS SEEN FROM BACK WITH CHASSIS INVERTED)
behave exactly like a good, low-power publicaddress amplifier. (Do not use a crystal or a dynamic mike.) Make sure the switch is in "transmit" position, before making these latter tests.

The unit as so-far constructed will serve very well as a code-practice oscillator with the toggle switch open, or as a small PA amplifier, with the switch closed. If it's too loud for you, connect a $50,000-\mathrm{ohm}$ variable resistor from the grid of the last 12AT7 to ground (see Fig. 6). Varying this control will vary volume, but it may also have some effect upon the tone of the oscillation.

To use the audio system so-far constructed for a code practice oscillator, connect an ordinary telegraph key, in series with a 220 K , one-watt carbon resistor to the Mike-Key terminals. The frame of the key should be connected directly to the grounded side, the 220 K resistor in series with the other side. At full output, the signal is strong enough to serve a roomful of students; the volume may be reduced by the temporary volume control described above. Be sure the toggle switch is in the open position, and the R-T switch in the Transmit position, of course.
Receiver Section. Start by connecting the
regeneration control, 100 K potentiometer and 47K voltage-dropping resistor, along with the 100K detector plate load resistor (see Fig. 9). These parts are installed beneath the chassis -using insulated tie-lugs where appropriate to hold the resistors firmly in place.

With this under-chassis receiver wiring done, drill and assemble the receiver sub-unit (Figs. 10 and 11). Since this receiver operates at the high frequency of 144 -million cycles per second, short and direct leads are of paramount importance. This applies especially to grid, plate and bypass-capacitor leads. It is important to return cathode leads and highfrequency bypass capacitors in the same stage to the same ground where possible.
speaker. This hiss indicates super-regeneration, the condition for high sensitivity in a receiver of this type. By varying this control, it should be possible to increase the hiss level from zero to strong. Also, a super-regenerative condition should be possible over the entire range of the tuning capacitor.

When the receiver super-regenerates properly, check the tuning range with a grid-dip meter. My receiver covers from about 140 to about 150 megacycles, with the 144-148 megacycle amateur band falling between about $60 \%$ and $70 \%$ of maximum capacitance of the tuning capacitor. The exact tuning range is not critical as long as the 144-148 megacycle amateur band is conveniently included.


The 15 mmf Bud receiver tuning capacitor is modified by removing one of its rotary plates. Grasp one of the rotary plates firmly in the jaws of a long-nosed pliers, twist and pull, and the plate will slip cleanly out of its slot. This will leave one rotor and one stator plate. The two remaining plates should not scrape against each other. You may increase the band-spread (number of dial-degrees occupied by the amateur band) by cautiously bending the two plates away from each other. Do not make this adjustment, however, until the receiver is performing properly.

Wind coil L1 (see Fig. 13A) carefully and complete as much of the wiring as possible, before mounting the sub-unit upon the chassis. It is fastened in place with $6-32 \mathrm{rh}$ machine screws and nuts. Next, connect heater, dc power, and signal output leads to the appropriate points under the chassis. Do not connect the antenna coaxial lead until later.

With the receiver wiring completed, insert tubes, connect loud speaker temporarily, and apply power. With the R-T switch at Receive, advance the volume control to full-on. Then slowly advance the regeneration control potentiometer. As this control is advanced, a loud, smooth hiss should be heard from the

Squeeze the turns of the coil together or spread them slightly for minor changes.

If you live in or near a large city, you should now be able to hear two-meter amateurs on the air within range when a good antenna is connected between the antenna input tie point and ground. In addition, police, taxicab dispatchers, and aircraft operating adjacent to the amateur band may be heard in many areas. If you have not yet installed a good two-meter antenna, a high, clear outdoor TV antenna may serve temporarily to test the receiver. (Install a knob temporarily on the capacitor shaft to aid in tuning. To use a TV antenna to test receiver, connect one of the lead-in line wires to the antenna input tie point, the other to chassis.)

Transmitfer. Start wiring with the crystal oscillator and work forward (see Fig. 11). The crystal plugs into any two alternate pins of the octal crystal socket; other unused pins may be used for tie-points for other circuits if desired. The crystal oscillator tube is the half of the 12AT7 that was not used for the AF amplifier circuit. The only critical part of the circuit is the coil, and this will cause no trouble if it is wound exactly as described in Fig. 13B.

After carefully checking the crystal oscillator circuit, proceed to the 6AQ5 frequency doubler stage. Again, this stage is straightforward; only the coil being critical. Wind this coil exactly as shown in Fig. 13C, being careful to get the tap in the exact center. Ground the cathode and the screen bypass capacitor to the same point on the chassis, as close to the socket as possible. The 1 K resistor should be fastened to a two-point insulated tie lug mounted close by the coil.

When this doubler stage is complete, wire the final amplifier stage. Although a frequency doubler, this circuit develops practically the same efficiency as a straight-through amplifier while at the same time avoiding the self-oscillation troubles which plague the lat-
ter. Its push-push foature also helps to eliminate odd harmonics which could get into TV receivers and cause interference. The ordinary distortion-type frequency doubler, often used in simple VHF transmitter arrangements, provides none of this added spuriousharmonic suppression.

Again, since the output circuit is tuned to 144 megacycles, you must keep all leads as short and direct as possible. An extra quar-ter-inch of wire here can spell the difference between success and failure. Wind coil L4 exactly as shown in Fig. 13A and keep the leads short! Wire the entire final amplifier circuit carefully, but do not connect the antenna coax cable yet or the plus high-voltage lead. In the final stage, return all ground connections to the same point near the tube socket.

When the wiring of the transmitter RF

stages is completed, insert tubes. Do not apply power yet, however. Instead, get your grid-dip meter, and carefully adjust each of the coils as closely as possible to its correct resonant frequency; 36 megacycles for the crystal oscillator, 72 megacycles for the doubler, and set the final tank to resonance at 144 megacycles. Be sure the tubes are in their proper sockets for this operation; their capacitance plays a big part in determining the resonant frequencies. If properly wound and installed, each of the coils should resonate at the correct frequency, with considerable extra slug-adjustment range available in either direction. The final tank coil may be adjusted by squeezing or spreading its turns.

When all coils have been pre-tuned, plug

in the crystal, and apply power. Tune the grid dipper to 36 megacycles and immediately adjust the crystal oscillator coil for maximum oscillator output. If the crystal oscillator doesn't oscillate, recheck the wiring, and try another tube. When you find oscillation, screw the slug down until you get maximum output, then screw the slug out about three turns in the interest of stability and reliability of oscillation. Then immediately adjust the doubler coil slug for maximum output. Take a No. 48, or No. 49 dial light bulb (pink head) and solder a small loop of wire between its terminals. Then couple this loop closely about the doubler coil. If the doubler is operating properly, the lamp will light noticeably.

Now connect the positive high-voltage lead


to the final amplifier, apply power, and tune the final tank capacitor to maximum 144megacycle output with the grid-dip meter. If you find plenty with the grid-dip meter, couple your "soup-loop" tuning lamp to the final coil and slightly re-tune. The bulb should glow brightly if the lamp is closely coupled. If you get weak, or no output, check the wiring again, or try another 12BH7 tube. Now temporarily shut off power and plugin the audio amplifier tubes. Connect your carbon mike to the Mike-Key terminals. Set the toggle switch to the closed position. Reapply power and speak clearly into the mike. The bulb around the final amplifier tank should flicker markedly in step with your voice, indicating proper modulation.

The Finishing Touches. Pull out all tubes and remove all external connections. Mount the loudspeaker, the tuning-eye assembly, and the vernier dial upon the panel. Now remove the potentiometer and ReceiveTransmit switch binding nuts and install the panel with the binding nuts and with selftapping metal screws. Place knobs on potenti-

## The VHF Amateur Bands

Today the VHF bands provide the greatest opportunity and challenge to the experimentally minded ham. These frequencies above 144 megacycles seem to be the only ones left wherein simple, low-powered equipment still can compete effectively against expensive, "store-bought" gear.

Nobody knows for sure the exact distance limitations on VHF communication. The first signal bounced off the moon by the U. S. Army back in 1946 was in the VHF range. On the other hand, it is the consistent, interferencefree, short-haul communication, up to 50 miles or so, that is the operating bread-and-butter of the VHF amateur. Occasional long-distance spurts are to be considered as interesting diversions, rather than daify fare. Distance chasing, in itself, is not the whole of amateur radio. You'll have a lot of fun, face some stimulating problems, and meet some nice people on the two-meter band, believe me.

Those frequencies between 145 and 147 megacycles are available to both novice and technician class licenses, as well as the general-class operator. But do make sure that you have a license before you do any transmitting. "Citizens Band" license is not sufficient. You must have an Amateur license. (Write to the Federal Communications Commission office in the large city nearest you for details.)

In addition to the license, and to the usual hand tools owned by all radio experimenters, you should have available:

1) A good "two-meter beam," a directional antenna for the 144-megacycle band. Such an antenna is not expensive or unwieldy, in fact it is smaller than the usual outdoor TV antenna. A five-element antenna is sufficient, and can be purchased at a reasonable price from Newark Electric Co., Allied Radio, or any similar Amateur jobber.

You should equip your beam antenna with a suifable rotating-device, (one of those sold for TV antenna use will do very well) and you should get it as high above the ground as you can. A "quick and dirty" rule is that you can reliably work one mile of range per foot of antenna height (above average ground) beyond ten feet, in other words, this is your consistent communication range, in miles.

While you can make a number of contacts, particularly in the New York, New England, and Chicago areas, with a dipole in the attic, a good beam will do more for your morale than anything else.
2) A grid-dip meter. Stray capacitance and inductance being unpredictable in most cases, it becomes necessary to individually trim VHF tuned circuits by trial in nearly every case. The proper tool for establishing these resonant frequencies is the grid-dipper.
3) A volt-ohm-milliammeter.

ometer and R-T switch. Connect the receiver tuning capacitor to the vernier tuning dial with a piece of $1 / 4-\mathrm{in}$. fiber or plastic rod and a shaft coupling. A setting of zero upon the tuning dial should correspond to maximum capacity, lowest frequency.
Plug the 6E5 tuning-eye tube into its socket, and fit it into the clamp provided on its bracket. Bring the cable from the tuning eye socket through the chassis through a $3 / 8$ in. hole with rubber grommet. Connect the black and blue wires of this cable to ground, the green wire to the 6.3-v heater supply, and the red wire to the positive high voltage.

Install the 1N34 crystal diode, the 5000 mmf. capacitor, and the 220 K resistor in the tuning meter circuit upon a two-lug insulated tie point, being careful to observe the polarity of the crystal diode. Install the diode-resistor assembly close to the final amplifier tank coil. Connect the yellow wire from the tuning eye tube to the ungrounded end of the 220 K resistor as indicated in Fig. 14.
Now is the time to connect the receiver input and the transmitter output to the R-T switch through RG-59-U coaxial cable. Ground the outer sheath of each piece of cable firmly to the chassis at both ends of its run. The coaxial cable from the transmitter (center conductor) is tapped one turn from the grounded end of the final tank coil, L4, as shown in Fig. 13A. The receiver cable is run from the R-T switch to the input tie-point on the receiver sub-unit. Bring the cable up through a grommeted hole in the chassis. Next, run a piece of cable from the R-T switch to the antenna terminals on the terminal strip. Connect a short piece of wirenot over $1 / 2 \mathrm{in}$. long-from the center conductor of the coax cable (where it connects to the transmitter tank) to the tuning diode.

Finally, run the wire from the $\mathrm{R}-\mathrm{T}$ switch
to one side of the speaker, passing it thru a de-burred $1 / 8-i n$. hole in the chassis. Ground the other speaker voice-coil lug.

Connect the power cord, and microphone to the proper terminals on the terminal strip. Then connect a No. 48 pilot lamp bulb across the antenna terminals. Apply power and, when the tubes are warm, throw the R-T switch to Transmit. The bulb should glow brightly and the tuning-eye should move toward closed position. (If it opens, reverse the connections to the IN34.) Re-tune the final amplifier tank and buffer tank for maximum glow from the bulb. Note also that the eye closes most when the output is at a maximum. Speak into the mike and note the variation in bulb brilliance and eye closing as you speak, indicating proper modulation.

Now, remove the lamp bulb, and connect a 144-megacycle antenna system, preferably a good, high, beam antenna. Make sure the grounded terminal of the antenna feed coaxial cable is connected to the grounded terminal on the terminal strip. Throw the R-T switch to Receive and adjust regeneration for a smooth hiss. If there are any other twometer amateur stations operating in your vicinity, you should hear them with no difficulty. Now throw the switch to Transmit position and adjust the final tank capacitor to close the eye as completely as possible. You're tuned-up and ready to go.

Novices learning the code, may wish to operate in the modulated code, MCW mode, which is legal in the 144-megacycle band. To use, throw the toggle switch into the open (MCW) position, and substitute a telegraph key, in series with a 220 K resistor, for the microphone. Otherwise operation is identical to voice. The smooth, tone-modulated CW signal radiated can be read by other amateurs, regardless of the receiver employed.

## Economy Frequency Standard

Here is a versatile frequency standard that the amateur, SWL, or experimenter can build in one evening for about five dollars

By JOE A. ROLF, K5JOK

THIS compact frequency standard will enable you to calibrate your receiver and check its accuracy at will. It can also be employed as a beat frequency oscillator for receiving CW signals, and for other applications requiring a stable 400 Kc to 1200 Kc RF generator.

The circuit shown in Fig. 3 is a high-C Colpitts oscillator using a parallel connected 12AU7A. Excellent frequency stability is achieved by the use of a high-Q loopstick as tank coil and a large value of tank capacity. Two NE-2 neon lamps regulate the oscillator plate voltage for added stability. With rigid construction and good shielding, the circuit has negligible drift after initial warm-up.
For maximum compactness, the unit is constructed in a $15 / 8 \times 21 / 8 \times 23 / 4$ in. Minibox (CU2100). Construction details are shown in Figs. 2 and 4. The 12AU7A is mounted outside the cabinet to avoid heating frequency-determining components. The output jack, J1, and tank coil, L1, are mounted beside the tube socket. Inductance L1 should be securely mounted and reinforced with a bead of Duco cement to insure against possible vi-

## Frequency standard is powered from an external source. Designed primarily for 500 Kc , it can be tuned from 400 Kc to 1200 Kc .




MATERIALS LIST-FREQUENCY STANDARD

Desig.

Description
1000 mmf silver mica capacitor
3000 mmf silver mica capacitor
.01 mfd dise ceramic
270 mınf mica capacitor
50 mmf mica or disc ceramic
small feed-through insulator, coax jack, or phone tip jack
ferri-loopstick antenna coil
NE-2 neon lamp (two required)
100,000 ohm, $1 / 4$ watt resistor
1,500 ohm, $1 / 2$ watt
3,300 ohm, 1 watt
Cu-2100 Minibox
12AU7A tube
3 -conductor cable, length as desired
5-lug terminal strip
9-pin miniature tube socket
$\frac{1 / 8}{5} \times 1 / 4^{\prime \prime}$ machine screws and nuts
$5 / 16^{\prime \prime}$ rubber grommet
tube shield, decals, etc.
this switch can be included in the Minibox.

Adjustment of the slug on L1 permits the unit to be set at any frequency from about 400 Kc to 1200 Kc . This permits a number of applications, the most obvious, of course, as à 500 Kc or 1000 Kc frequency standard. When tuned to 500 Kc , useful harmonics will appear at 500 Kc . intervals up to about 15 Mc . Above 15 Mc , 500 Kc harmonics rapidly become too weak for easy receiver calibration and it is necessary to shift the standard's setting to 1000 Kc to get harmonics of useful amplitude above 35 Mc . The unit can be accurately adjusted to either frequency by zero beating WWV at $2.5 \mathrm{Mc}, 5 \mathrm{Mc}$ or 10 Mc .
As a frequency standard, the unit is small enough to fit inside most receiver cabinets. In most cases, a short length of insulated wire connected to J1 and brought near the receiver input circuit will provide sufficient coupling.
However, you may find that with some receivers or with less than $225-\mathrm{v}$ plate voltage, it maý be necessary to connect the standard directly to the receiver antenna terminal with a $5-30 \mathrm{mmf}$ mica capacitor.

Another useful application, for the SWL or amateur, is as a BFO (beat frequency oscillator) for $455-\mathrm{Kc}$ IF receivers. The standard can be tuned to the IF frequency and connected to the grid or plate lead of the receiver's last IF stage with a 2 to 5 mmf capacitor for CW reception employing an allwave set or an automobile receiver.

Note that Fig. 2 is shown wired for a $6-\mathrm{v}$ filament supply, pin 9 of the 12AUTA grounded, pins 4 and 5 tied together. If you are using a $12-\mathrm{v}$ filament supply, pin 9 will have no connection, pin 5 is grounded, and pin 4 is wired to the 12 volts (see Fig. 3).


> This compact ac-dc receiver features good sensitivity, better than average selectivity, and simplified construction. It has an adjustable tuning range of $\mathbf{8 5}$ to $\mathbf{5 5 0} \mathbf{k c}$. and is easily modified for broadcast-band reception

By JOE A. ROLF, K5JOK

THE circuit of this economical receiver (see Fig. 4) employs two miniature high-gain TV tubes. The 6AN8 is a regenerative detector; the pentode section of the 6AU8 is an audio amplifier: The triode of the 6AU8 serves as an ac-dc type rectifier.

The heart of the circuit is the detector, a regenerative cathode-follower type commonly known as the "Regenode." If you're not familiar with this hybrid circuit, here's how it works: The pentode section of the 6AN8 is a conventional grid-leak detector, with the exception of the signal grid which is separated from the tuned antenna circuit by the cathode-follower connected triode section of the tube. This arrangement permits a degree of selectivity not possible with the detector
grid connected directly to the antenna circuit, since the signal-grid loads the tuned circuit and reduces its Q , or selectivity ability. The cathode-follower isolates the detector from its input circuit and allows a great improvement in selectivity. The circuit operates smoothly, is easily adjusted, and eliminates hand-capacity effects common to most regenerators. These advantages are particularly desirable in a LW receiver.

Since hand capacity does not affect operation, an all-wood chassis constructed with simple hand tools can be used. Chassis details are shown in Fig. 5. Large holes (for tube sockets and controls) can be made with a coping saw; fastener holes can be made with a hot ice-pick in the absence of a drill. A


YOU'LL be pleasantly surprised at the number of interesting signals to be heard below the standard broadcast band, though at first they may sound like nothing but jumbled dots and dashes intermixed with weird howls and squeals. Careful listening, however, will reveal this apparent bedlam to be important communication services which make unusual listening and challenging DX.

The main divisions of the 10 Kc . to 535 Kc. band are shown in Table A. It is occupied mainly by aeronautical and marine services, although $150-535 \mathrm{Kc}$. is part of the standard BC band in Europe and Asia. However, without discounting the possibility of logging some of these BC stations, the marine and aeronautical stations are of prime interest to most LW listeners.

## What to Listen To on LW

## The long waves provide up-to-the-minute

reports on weather and flying conditions,

## code practice and some good DX

The most popular are the navigational aids, or radiobeacons, heard between 200 Kc . and 405 Kc . Some are marine beacons, others aeronautical. Both employ very slow amplitude modulated code and are easily distinguished from one another by their signals.

Marine beacons usually transmit their call signs continuously in an omni-directional pattern. In some cases the call, consisting of from two to four letters or numerals, is separated by a number of dashes. Many marine beacons can be heard constantly over a considerable range, while the less powerful can be logged at great distances under favorable conditions.

Aeronautical range stations transmit a combination A-N signal in a four-leaf pattern like that of Fig. 1. They identify themselves every thirty seconds and employ two pairs of antennas to obtain the four-leaf radiation pattern. The transmitter is operated continuously and is alternately switched between the two antenna systems so that an $A$ (dit dah) is radiated in the directions marked $A$ in Fig. 2, and an $N$ (dah dit) in the directions marked $N$. Midway between the A and N patterns, the signals merge as a steady tone which aircraft follow to or from the station. If the pilot leaves this course, he will hear either the $A$ or the $N$.
These radiobeacons offer an unlimited
metal chassis will afford more compact construction, but a wooden panel and cabinet should be used to avoid accidental grounding of the chassis.

Construction is not critical and will pose no difficulty if the general layout shown in Figs. 2, 3, and 5 is followed. Keep RF and AF leads separated and away from ac léads. This is best accomplished by wiring the filaments and power supply first, then the AF and detector stages.

Ground connections are made to solder lugs mounted to the socket and tuning capacitor fasteners. Components R4, R6, R9 and R10 mount on a 7 -lug terminal strip at the rear underside of the chassis (see Figs. 3 and 4). The filter capacitor, C11, can be wedged between the 6AU8 socket and chassis leg, or secured with a mounting clip. Two sections of this capacitor are used in the power supply
filter, the third is used as a cathode bypass for the audio stage.

Other components under the chassis, except R3, C7 and C9, mount to respective tube sockets. Capacitor C9 is connected from J2 to the grounded terminal on R5. Resistors R3 and C 7 connect to a machine screw and solder lug placed between L1 and C2. One lead of L2 connects to a solder lug on the same screw on the chassis top.

The antenna trimmer, C 1 , is secured by the antenna terminal mounting screw as shown in Fig. 3. This component requires only infrequent adjustment, but it can be mounted on the front panel for easier access, if desired.

Inductance L1, a standard TV replacement coil, is mounted last. Before inserting the core, as explained in the manufacturer's instruction leaflet, thread on the $\overline{5} / 16-\mathrm{in}$. mounting clip and remove $1 / 2 \mathrm{in}$. from the slotted

TABLE A-LONG WAVE ALLOCATIONS
Frequency (Kc.) Communications Service Sunset Skip Night DX

| 10-14 | Radionavigation | none | 4 am <br> ta 7 am |
| :---: | :---: | :---: | :---: |
| 14-200 | Fixed Public Services and Coastal-Marine CW |  |  |
| 200-283 | Aeronautical Beacons and Communications |  |  |
| 285-325 | Marine Radiobeacons |  |  |
| 325-405 | Aeronautical Beacons and Communications | $\begin{gathered} 10 \mathrm{pm} \\ \text { to } \\ 2 \mathrm{am} \end{gathered}$ |  |
| 405-415 | Radio Direction Finding |  |  |
| 415-490 | Coastal and Marine CW |  |  |
| 500 | International Calling and Distress Frequency | 2-4 <br> hours <br> after <br> sunset | $\begin{gathered} 11 \mathrm{pm} \\ \text { to } \\ 7 \mathrm{am} \end{gathered}$ |
| 510-535 | Misc. Radioheacons |  |  |

Note: Frequencies between 150 Kc . and 535 Kc . also used by foreign BC stations.
source of unusual DX. At first sight, these stations seem to offer poor DX since most are relatively low powered and have a daytime range of less than 200 miles. However, their range is greatly increased at night-best times for night DX are given in Fig. 1. These hours will vary somewhat with the seasons, with the choicest DX being heard from early fall to late spring.

Above 325 Kc . sunset skip is often heard for a half-hour during early darkness. Notable examples are PJG, 343 Kc . in the Netherlands Antilles; ASN, 350 Kc . on Ascension Island; and SWA, 406 Kc . from Swan Island.

Since beacons identify continuously or every thirty seconds, less than a minute is required to log a station. However, in order to determine the locations of the stations you

## table b-STATION LISTS

The Airman's Guide Superintendent of Documents, Washington 25, D. C. 25 t per copy. A bi-weekly publication listing all U. S. aeronautical radio beacons.

Location Identifiers Superintendent of Documents, Washington 25, D. C. $\$ 1.50$ for copyand one-year supplement service. General listing of all domestic beacons.

BroadcastingStations Superintendent of Documents, Washington 25, of The World, Part D.C. $\$ 2.00$. Includes European LW broad11, According to casting stations.
Frequency
Air Navigation Radio Aids

Department of Transport, Air Service Branch, Ottawa, Ontario, Canada. Complete list of Canadian Radio Beacons, published every two months.

Radio Facility Charts ACIC, USAF, 2nd \& Arsenal Streets, St. Louis -Caribbean \& 18, Mo. One year subscription $\$ 3.50$. Listing South America of Caribbean \& South American beacons.

Radio Navigational Aids

Hydrographic Office, U. S. Navy. An annual publication listing worldwide marine beacons.

List of Coast Stations Secretary General, International Telecommuni(4.10 Swiss francs) cations Union, Geneva, Switzerland. Very comList of Ship Stations plete listings of worldwide stations.
( 12.80 Swiss francs)
List of Call Signs
(21 Swiss francs)
hear, you need a reference $\log$ listing the stations you are interested in. Such listings can be purchased (see Table B).
Range stations also transmit verbal weather reports for air fields in their area 15 minutes before and 15 minutes after the hour.

In addition to radiobeacons; many CW stations operate on long waves for maritime, aeronautical, and public service communication. For the CW enthusiast, these are interesting to copy and the slower stations, sometimes sending as slow as eight words a minuite, provide plenty of code practice. Many good DX signals can be heard between 415 Kc . and 500 Kc ., particularly on the 500 Kc . international calling and distress frequency. The frequencies below 200 Kc . are also widely used by public service and maritime CW stations.
end of the core adjustment screw, otherwise it will protrude below the chassis when the coil is mounted. Clamp the section to be removed in a vise and cut it off with a hacksaw, then cut a new screwdriver slot. Take care not to break or fracture the fragile ferrite coil.

Inductance L2 consists of 35 turns of \#26 (or smaller) enameled wire scramble-wound over a $9 / 16$ in. ID tube which slides freely over L1. If not available, this form can be made by winding four or five layers of moist gummed tape, sticky side out, over L1. When dry, slip the tube off and trim to proper length with a razor blade. With L2 in place, secure L1 to the chassis with a bead of Duco cement.

For maximum sensitivity, the position of L2 on L1 should be adjusted for the individual receiver. This simple adjustment is well
worth the effort and can be made with a long antenna, 455 Kc signal generator, or a BCB receiver with a 455 Kc intermediate frequency. If possible, use a signal generator or BCB receiver, since this will permit adjustment of L2 and the core of L1 at the same time.

Short out L2 temporarily by connecting a short piece of wire from the R3-C7 solder lug to pin No. 7 of the 6AN8 socket. Turn the core adjustment screw full counterclockwise and connect the antenna, signal generator, or BCB receiver to the antenna terminal.

If a BCB set is used, tune to a strong BCB station and turn the set's volume down. Connect a short piece of insulated wire to your LW receiver antenna terminal and place it near the underside of the BCB set's IF tube socket or IF transformer to hear the 455 Kc IF signal of the BCB receiver.

Cl
Topside of the receiver's Masonite chassis. The antenna coil, L1, is mounfed so that its slug is adjusted from below the chassis.

| materials list--long wave receiver |  |  |  |
| :---: | :---: | :---: | :---: |
| Desig. | Description | Desig. | Description |
| $\mathrm{Cl}_{2}$ | 9 to 180 mmf trimmer capacitor | R10 | $2.2 \mathrm{~K}, 1 \mathrm{watt}$ |
| C2 | 10 to 365 mmf variable capacitor, standard single-gang TRF type | J1 | antenna terminal post, or Fahnestock clip |
| C3 | . 01 mfd disc ceramic |  | Standard phone jack Long Wave: Merit MWG.9 Width or Linearity coil, 3 to |
| C4 | 100 mmf mica |  | 12 ma., tapped (see text) |
| C5 | . 5001 mmmf disc ceramic |  | Broadcast: Ferri-loopstick BCB antenna coil (see text) |
| C7 | . 01 mmfd disc ceramic | L2 | Long Wave: 35 turns \#26, or smaller, enameled wire |
| C8 | . 01 mfd disc ceramic |  | scramble wound on $9 / 6^{\prime \prime} 10 \times 3 / 8^{\prime \prime}$ form (see text) |
| c9 | . 0047 mfd disc ceramic |  | Broadcast: 3 turns $\# 26$, or smaller, enameled wire on adjustable form (see text) |
| $\mathrm{C10}$ | . 01 mfd disc ceramic | RFCl | 2.5 mh. RF choke (National R-100, or equivalent) |
| C11 | 40.40-40 mfd. 150 wv capacitor. 3 -section electrolytic filter | SW1 | on R7 |
| R1 | 6.8 capacior (1/2 watt resistor | T1 | filament transformer, 6.3 vct, 1.2 amp (Stancor P-6134 or |
| R2 | $1 \mathrm{meg}, 1 / 2$ watt | T2 |  |
| R3 | $33 \mathrm{~K}, 1 / 4 \mathrm{watt}$ | 12 | optional-for speaker use only; $5000 / 3.2$ ohm, 3 watt, 40 ma, output transformer. |
| R4 | $68 \mathrm{~K}, 1$ watt | V1 | 6ANB |
| R5 | $1 \mathrm{meg}, 1 / 4$ watt volume control with SPST switch (Mallory | V2 | 6AUS |
|  | U-53 Midgetrol with US-26 switch, or equivalent) | 1 pc | $1 / 8 \times 41 / 2 \times 6^{\prime \prime}$ Masonite (panei) |
| R7 | $100 \mathrm{~K}, 1 / 2$ watt watt, volume | 1 pc | $1 / 8 \times 4 \times 6$ Masonite (chassis top) |
|  | $100 \mathrm{~K}, 44$ watt, volume control (Mallory U-41 Midgetrol, | 2 pcs | pine strip, $3 / 4 \times 1 / 8 \times 4$ " (chassis sides) |
| R88 | 82 ohm. $1 / 2$ watt |  | two miniature 9-pin tube sockets |
| R9 | $5.6 \mathrm{~K}, 1$ watt |  | one 7 -lug terminal strip |

With the volume control at maximum and the regeneration control set at half-scale, place the tuning capacitor about $85 \%$ open and turn L1's core clockwise until the 455 Kc signal is heard. Adjust the regeneration control for maximum volume and mark its position. This is the detector's most sensitive
point and will determine the position of L2. Remove the jumper across L2 and slide the coil up or down over L1 until regeneration (signal distortion) occurs just above the point previously marked on the regeneration control. If the detector fails to regenerate, reverse the leads on L2.


Under-chassis view, showing placement of components.


SCHEMATIC
This receiver's tuning range, from 85 to 550 Kc , is covered in two adjustments of the core on L1. When set to receive 550 Kc at C2's minimum capacity, the receiver will tune down to about 200 Kc . The range from 85 to 200 Kc is tuned when the slug is almost fully inserted into L1. Overlap on both bands will
permit easy bandchanging once the operator is familiar with the stations heard around 200 Kc. On the lower band, L2 may require slight readjustment for best reception of weak signals.

For BCB reception, a ferri-loopstick is used for L1. Inductance L2 consists of three turns


C OPTIONAL CHASSIS COVER
and adjustment is similar to that of LW operation. The lead from C 1 should be connected to the grid end of the loopstick.

A high, long-wire antenna will give best all-round LW reception, though a short length of wire will give satisfactory local reception. Capacitor C1 should be adjusted for best reception on each band and the receiver should not be grounded.
In some localities, interference from strong BCB stations may be bothersome, a trouble commonly encountered with LW receivers having only a single tuned circuit. Such in-


6 PI ANTENNA TUNER

GROUND RECEIVER
terference can be minimized by reducing the antenna coupling or, in severe cases, by the use of the simple Pi antenna tuner (shown in Fig. 6). The tuner can be built on a small pine block. Adjust C1 and C2 for minimum BCB interference.

Four or five feet of hookup wire is sufficient antenna for BCB reception. The receiver will give good loudspeaker volume on the BC band and on the stronger LW stations. Due to the low power used by most LW stations, however, headphones are recommended for serious LW listening. For speaker operation plug a $5000-3.5$ ohm, 3 -watt, output transformer into J 2.

## Inverted Brush Cleans Gun's Tip

- To keep the tip of your soldering gun clean of scale, woodscrew-fasten a brass-bristle suede shoe brush to one end of your workbench. Wipe the soldering-gun tip across the brush occasionally to keep it clean for efficient soldering.-J.A.C.



## Why Inside Gun-Tip Care?

- To receive maximum soldering efficiency and long-tip life, be sure that cleaning and tinning operations of your soldering gun's tip also include the inside surfaces of the tip. A gun's tip that is maintained on the outside, but allowed to deteriorate on the inside, is sure to give lowered soldering efficiency and it will shorten tip life.

This small grey box performs the electranic hocus-pocus that will convert sine waves into varied waveforms.


## This inexpensive instrument converts $\mathbf{6 0}$-cycle ac or audio generator sine waves to sawtooth, half - sine, clipped half - sine, and square waves

By FRANK WOODS, Jr.

This waveformer is inexpensive (cost: less than \$5) and simple to construct. The waveforms generated by it can be used to drive sweep circuits, test amplifiers, check amplifier response, synchronize other equipment, and a host of other test and experimental jobs.

A sine wave is applied to the input terminals, and the switch next to the input terminals is set for the desired waveform; the level control is set for the desired output level. The desired voltage waveform will then be present at the output terminals on the right of the case. It's almost that simple.

Construction. Lay out the front half of the metal case as shown in Fig. 2. All components mount on this half of the case; the back is merely a cover. Mark hole starter marks on the case with an ice pick. Then, with the front and back of the case fastened together,


2
panel layout

drill $1 / 8$-in. holes for all positions. Separate the front and back of the case and enlarge the specified larger holes to the required dia. with a taper reamer. File the edges to remove burrs.

Saw the shaft of the switch to a length of $1 / 2 \mathrm{in}$. Saw the level control shaft to a length of $3 / 8 \mathrm{in}$. To avoid damaging switch and level controls, grip shafts in a vise when sawing. This prevents side pressure on bushings. Catch the switch or control when it is cut free from the shaft. The switch is ruggedly constructed, but it is subject to easy damage since its wafers are brittle.

Mount the input and output terminal binding posts. The bottom-chassis terminals are the common terminals; they make electrical contact to the metal case. The top-chassis terminals are insulated from ground by fiber washers between the binding post and the front of the case and between the retaining nut and the rear of the case, and by centering the binding posts. Note that the holes for the top binding posts are larger than those for the bottom. In the original model soldering lugs were used to permit soldering of binding post leads. A second nut on each binding post holds the soldering lug in place. But, the


|  | MATERIALS LIST-WAVEFORMER |
| :---: | :---: |
| Desig. | Description |
| R1 | $100 \mathrm{~K}, 1 / 2 \mathrm{~W}$ carbon resistor $10 \%$ tolerance |
| R2 | 500 K potentiometer (Lafayette VC-37) |
| C1, C2, ${ }^{\text {c }}$ | $.1 \mathrm{mfd}, 50 \mathrm{v}$ ceramic capacitor (Sprague TG-P10) |
| S (A, B, C, D) | 4-pole, 5 -position switch (Centralab PA-1013) |
| D1, D2 | IN54A diode (RCA) |
| B1, B2 | penlite cell (Burgess \#7) |
|  | 2 -penlite cell holder (Lafayette MS-138) |
|  | pointer knob (comes with switch) |
|  | miniature knob (MS-185) |
|  | binding posts (H. H. Smith 220R-red and 220B. |
|  | black) $\times$ "' mal box (But CU 2104 ) |
|  | 21/4x21/4 $\times 5^{\prime \prime}$ metal box (Bud CU-2104) |

soldering lugs are unnecessary since the connecting wires may be fastened between the two nuts.
Mount the switch and the level control on the case. Use retaining hex nuts on these controls behind the panel. Adjust to allow only enough of the control to protrude through the case to enable the hex nuts to be fastened on the front of the panel. Retaining washers between the rear retaining nuts and the rear of the panel will prevent the controls from slipping. At this point in the construction the components which fasten to the case are mounted-except for the battery holder.


When wiring, make connections to the switch so that they can readily be disconnected without damage. This approach will save you grief if you make a mistake in your wiring. Be very careful not to exert undue pressure on the switch terminals or you may twist them out of place or break a wafer.

Component layout of Waveformer.

Limit the length of time that you apply heat during soldering. The diodes in particular are susceptible to heat damage. Use a clean soldering iron capable of supplying a large amount of heat. A lot of heat applied for a short time will do a better soldering job with less chance of damage than a reduced amount of heat applied for a long time. Use rosin core solder only!
Figure 3, the circuit diagram, and Figure 4, a pictorial view, are used as a guide for wiring. Wire the switch first. Note that its sections are designated SA, SB, SC, and SD. Section SA is the lower half of the rear wafer; SB is the upper half of the rear wafer; SC is the lower half of the front (nearest the front panel) wafer; SD is the upper half of the front wafer. Connect the wires between terminals as shown and wire in components R1, D1, and D2.
Next, connect capacitors C 1 and C 2 . Then connect the wires which run from the switch and capacitors to the terminals, level control and battery holder.
Now mount the battery holder and make connections to it. The battery holder is mounted with a small hardware bracket $3 / 8$ in. wide with $1-\mathrm{in}$. and $5 / 8$-in. sides. Solder-fill the battery holder eyelets which form the battery contacts to insure good connection to the batteries. Insert the batteries and fasten the knobs on the switch and level control. Fasten the back to the case. The markings for the front panel are made on a strip of paper $3 / 8 \times 5 \mathrm{in}$.
Free-hand the waveform symbols which identify switch positions and fasten the strip to the front of the case with a 6 -in. strip of cel-
lophane tape. You may have to realign the switch knob to match the waveform markings.

Operation. To use the waveformer connect a source of sine wave signals to the input terminals as shown in Fig. 5.

The signal generator may be a $6.3-\mathrm{v}$ filament transformer (supplies 60 cycles only) or an audio signal generator such as the Heathkit AG-9 (frequency 10 cycles upward).

The Waveformer operates through a broad range of frequencies; principal limitations of frequency are imposed by the signal generator for most waveforms. A signal input level of 5 to 15 v is desirable to achieve the best waveforms.

Clean saw-tooth waveforms from about 10 cycles to about 10,000 cycles at .3 v will be produced by a $10-\mathrm{v}$ sine wave. Clean clipped waves from 1.5 to several volts, with a frequency range from 20 cycles to over 20,000 cycles, can be expected.

Science Fair Demonstration. To demonstrate the performance of the Waveformer, a Heathkit AG-9 Audio Generator fed a sine wave to the Waveformer and to a Heathkit S-3 Electronic Switch. The output of the Waveformer was fed to the other set of Electronic Switch input terminals. The output of the Electronic Switch was connected to the vertical input of the oscilloscope. This arrangement permitted simultaneous viewing of the Waveformer input and output waveforms.

Figure 6A shows the waveform output with the Waveformer switch set for saw-tooth output. Figure 6B shows the output with the Waveformer switch set for square wave. In Fig. 6C the input and output waveforms are superimposed with gains adjusted to show how the Waveformer clips the sine wave. The "squareness" of the output waveform will depend on the magnitude of the input sine wave signals. With larger sine wave input signals, the clipping action produces "squarer" waves. Figure 6D shows the superimposed waveforms with the Waveformer switch set to one of the half-clip positions.


Simultaneous viewing of input to, and output of Waveformer. Explanation is given in text.

Principles of Operation. When the Waveformer switch is set to the sawtooth-wave position, the basic waveforming circuit connections are those shown in Fig. 7A. First consider only D1 and C1. Diode D1 passes only the negative portion of the sine wave. As the sine wave goes negative, capacitor C1 charges rapidly in the negative direction. This produces the steep portion of the curve. As the input signal falls from the negative peak to the zero line, the charge on C1 prevents further passage of current through D1 and capacitor C 1 tends to discharge slowly through any load resistance connected across it. The use of D2 and C2 in the circuit improves the performance by providing additional storage and switch action.

When the switch is in the half-wave position the waveforming circuit reduces to that shown in Fig. 7B with diode D2 only in the



SET-UP FOR SQUARE WAVE AMPLIFIER TESTING
circuit. It passes only the negative half cycles.
With the switch in the square-wave position, the basic waveforming circuit is that shown in Fig. 8. As the input voltage builds up from zero, current flows through R1 to the output. But when the voltage becomes sufficiently high (greater than 1.5 v ) to cause diode D1 to conduct, the current is shorted and the straight top of the wave results. As the voltage decreases toward the zero line, diode D1 ceases to conduct when the voltage to the anode becomes 1.5 v , and the return to zero portion of the waveform results. Diode D2 and bias battery B2 operate on the negative half cycle in the same way. Only R1, D1, and B1 or R1, D2 and B2 are connected in the circuit to produce the half-clipped sine waves.

The level control R2 is a potentiometer which permits the setting of a desired output signal level. It is common to all switch positions.

The Waveformer is useful as a teaching tool to explain the operation of diodes, capacitors and pulse circuits, but it has more immediate practical applications. The sawtooth waveform may be used to provide sweep voltage for an oscilloscope. Some of the older inexpensive 'scopes employ sweep circuits that are extremely non-linear and tend to bunch a sine wave applied to the vertical input. If the sawtooth wave of the Waveformer is applied to the horizontal amplifier input of the oscilloscope, the linearity will be improved-if the amplifier has sufficient gain and frequency response.
The half-wave waveform may be used to drive a relay or any other dc device at a specified frequency. Of course, the device to be driven must be of sufficiently low power to allow operation with the signal generator used and the diode in the waveformer. The driven device cannot be operated at frequencies above those to which it can normally respond. The half-clipped sine waves may be used in similar fashion where an opposite "off bias" is desired.
Square-Wave Amplifier Testing. Clipped sine waves may be used to test audio amplifier frequency response. The square wave is applied to the input terminals of the amplifier and the waveform is observed on an oscilloscope connected across the output terminals of the amplifier (see Fig. 9).

A square wave contains a fundamental frequency sine wave and a large number of higher sine wave components. Figure 10

shows the fundamental frequency, the third harmonic, and the fifth harmonic, and how they combine to produce a waveform approaching a square wave. As more odd harmonics of proper phase and amplitude are added, the resulting waveform more nearly approaches a square wave.

Now, if a square wave is passed through an amplifier, amplifier defects will distort the waveform. Discrimination against frequency, and phase shift dependent on frequency (poor frequency response) will produce distinct distortions. If the response of the amplifier is poor at the fundamental frequency, the scope connected at the amplifier output will display a square wave with drooping midsections as shown in Fig. 11A. Phase shift is indicated by a waveform such as that shown in Fig. 11B. Attenuation and phase shift at high frequencies is indicated by an output waveform like that in Fig. 11C. Overshoot and ripples in the displayed waveform, as shown in Fig. 11D, are also indicative of high-frequency distortion. A pronounced high-frequency resonance in the amplifier under test will cause the overshoot to be further accented.

## Mousetrap Third Hand



- Need an additional hand to hold small wires and parts while you solder them? To make certain an extra hand is always available when needed, mount the spring mechanism of a mousetrap on the top of your spool of solder as shown. Screw-fasten the mechanism to a tight-fitting cork inserted into the center of the spool.-John A. Comstock.



## 1

A simple demonstration construction project, this oscillator employs a tunnel diode which, even in its case (above right), is dwarfed by a vacuum tube.

THIS oscillator is one of the earliest tunnel diode construction projects designed for experimenters. It is an effective demonstration device, and it will attract attention by virtue of its simplicity and the fact that the tunnel diode is a novelty. For the builder, it is a painless introduction to the operation and use of the tunnel diode.

In July 1959 the General Electric Research Laboratory announced progress in the development of tunnel diodes, and offered them in limited quantities at $\$ 75$ per unit for labora-


## Tunnel Diode

## Braalcast

## Oscillator

The tunnel diode-newest member in the fast-growing family of semi-conductorsis giving its first cousin, the transistor, an inferiority complex. Here's a project which helps to explain why
tory use. Prices have been decreasing-thank goodness!-since that time and at the time this article goes to the printer are below $\$ 10$. Obtain one now, and get in on the ground floor of an exciting new electronic device. Within a year or two tunnel diode prices should have dropped to a dollar or two a unit, and you will have sufficient knowledge to build the many circuits that are possible with this device. The tunnel diode will be the subject of many science fair and engineering day displays, and it will soon be a common component in TV, communications, computer, and other electronic units.

The circuit of the tunnel diode oscillator


Here-in an exiremely simplified diagram-is how the tunnel diode operates. Drawing represents a structure similar to a Chinese checkerboard, with one side slightly raised. Holes on the left side (which represent an n-type semiconductor) are filled with marbles, with a few left over and sitting on top. Right side (representing a p-type semiconductor) has a few holes vacant. The slope represents the potential barrier. A marble (or electron) from the left, con-after being given a push-enter a hole on the right side by rolling up the slope and dropping in. Or, without the push, it can miraculously "tunne!" through the board and appear in a hole. The former process is used in conventional diodes and transistors. The lafter represents what happens in tunnel diodes.

THE tunnel diode was first reported by a Japanese scien-tist-Dr. Leo Esaki-in 1958. It takes its name from the phenomenon that makes its operation possible: quantummechanical tunneling.
As with transistors, it depends on the transfer of an electrical charge across a p-n junction, the region between a p-type semiconductor, which has an excess of positive carrier or "holes" (empty electron states), and an $n$-type, which has an excess of free electrons.

The opposite sides of this junction take on a charge which resists the movement of the "holes" and electrons across it. In the transistor, a charge carrier must be emitted into a region where its energy can be boosted by an outside voltage. It is then collected on an output electrode. The speed of this process is limited by the time it takes the charge carrier-having left the emitter-to traverse the control region and appear on the collector. This time limits the frequency at which the device can function and is quite long compared to, say, the time needed for a signal to travel an equivalent distance along a copper wire.

The quantum-mechanical theory says there is another way in which the particles can pass the barrier: an electron has a small, but definite possibility of disappearing from one side of the potential barrier and re-appearing simultaneously on the other-even though it does not have enough energy to surmount the barrier. It is as though the particles "tunnel" under the barrier, setting up almost instantaneous surges of current. Thus, in the tunnel diode, the signal moves with the same speed as it would in a copper wire-the speed of light.

The construction of a tunnel diode gives it some other
interesting characteristics. Its p-n junction is made of materials more heavily loaded-or doped-with impurities than conventional diodes, and made so that the barrier between $p$ and $n$ sections is extremely thin, less than $a$ millionth of an inch thick.

So long as no outside voltage is applied across the p-n junction, there is no net current-since the electrons tunnel back and forth easily through the barrier in both directions. Apply a small voltage, however, and current appears. Add still more voltage, and current decreases. Add more, and current increases again.

In the range where an increase in voltage results in a fall-off of current, the tunnel diode is said to have "negative" resistance-making it suited for use as an amplifier or oscillator.

This negative resistance quality, combined with speed-of-light operation, makes possible a very high frequency response. Engineers confidently expect oscillation frequencies of more than 10,000 megacycles.

Some other outstanding features:

- It is smaller than a transistor and, because of its simplicity, ultimately will be just a fraction of its present size.
- It is affected very little by environment. The tunnel diode can operate at the near-absolute zero temperature of liquid helium or-at the other end of the thermometerat temperatures up to $650^{\circ} \mathrm{F}$, while conventional silicon diodes won't operate above $400^{\circ} \mathrm{F}$.
- It has a low noise level, only parametric amplifiers and masers competing closely with it. And of these, only the tunnel diode can operate directly from a battery.
is shown in Fig. 2. Resistors R1 and R2 divide the voltage from the $1.5-v$ battery down to about $0.15 v$, the approximate voltage for negative resistance operation of the tunnel diode. Resistors R1 and R2 were chosen so that R2 would be a fraction (about $1 / 2$ th in this case) of the tunnel diode negative resistance (which is about 150 ohms ). Inductor L and
capacitor C form a resonant circuit that controls the oscillations of the tunnel diode, TD. (Several symbols for tunnel diodes have been suggested and are presently used by different manufacturers. The conventional symbol is shown in Fig. 2).

Correct polarity of the voltage applied to the diode is important-Be careful not to re-

MATERIALS LIST-TUNNEL DIODE OSCILLATOR
Description Desig.
R2 27 ohm, $1 / 2$ watt carbon resistor, $10 \%$
R1 270 ohm, $1 / 2$ watt carbon resistor, $10 \%$
broadcast band ferrite loop antenna (Miller 6300)
365 mmf . miniature tuning capacitor (Lafayette MS-445)
tunnel diode General Electric 1N2939 (ZJ56) or 1N2940 (ZJ56A)
miniature momentary contact switch (Grayhill 4001)
1.5 v. penlite cell (Burgess \#7)
penlite cell holder (Lafayette MS-137)
$1 \times 13 / 16 \times 27 / 8^{\prime \prime}$ plastic case (Lafayette MS-157)
Comporents for this project may be obtained from Lafayette Radio, 100 6th Avenue, New York 13, N. Y.


SCHEMATIC

Four holes are required in the plastic case. Start these holes with a heated ice pick. Capacitor $C$ and the switch $S$ are on the case centerline. The hole for the capacitor is $5 / 8 \mathrm{in}$. from the top of the case. The mounting hole for switch S is centered on the bottom side of the front half of the case. Locate the battery holder mounting holes by using the holder, against the back half of the case, as a guide. Enlarge the tuning capacitor and switch mounting holes to $5 / 18 \mathrm{in}$. dia. with a taper reamer. Wash the case with soap and water and rinse with clear water to remove fingerprints after all of the holes have been made.
Mount the switch S , the capacitor C and the battery holder. Then wire the circuit. Use a hot, clean soldering iron and rosin core solder to make connections. Minimize the danger of heat damage to the tunnel diode by grasping the leads with needle nose pliers between the tunnel diode case and the connection point during soldering. When wiring is complete, insert the battery in the holder.

This oscillator operates in the broadcast band. To demonstrate its operation, tune in a relatively weak station on a broadcast receiver. Push the switch $S$ on the oscillator. A momentary contact switch, it is "on" only when depressed. Hold the tunnel diode oscillator near the broadcast receiver antenna and tune C till a whistle is heard. At this point, the tunnel diode oscillator is tuned to the frequency of the received station.

The short length of wire furnished on coil $L$ was removed, but if you have trouble picking up the signal on your receiver, simply connect a 6 - to $8-\mathrm{in}$. length of wire at point A (Fig. 2) and provide a hole for it in the plastic case. This lead will act as a short antenna and provide better coupling of the signal to the receiver.

The unmodulated signal from this oscillator will not be audible in a receiver unless the receiver is tuned to a station. The oscillator signal beats against the received signal.
verse it. The General Electric 1N2939, 1N2940, and 1N2941 (formerly designated as the ZJ-56 series) are housed in TO-18 cases and have the pin connections shown in Fig. 2. Note that leads 1 and 2 are both connected to the positive electrode.

The rear view of the tunnel diode oscillator with case open is shown in Fig. 3. Use Figs. 2 and 3 for guidance in assembling the unit and wiring it.

If you have difficulty check the battery voltage, and check capacitor $C$ for a possible short. Remove the battery and the tunnel diode when checking any portion of the circuit with an ohmmeter. A change in the value of R2 may be required. Disconnect it and substitute a $100-\mathrm{ohm}$ variable resistor. Adjust until unit operates, then disconnect and find value, and permanently install a resistor of this value for R2.-Frank WOods, Jr.


By FORREST H. FRANTZ, SR.

THE type of meter we are concerned with has an electromagnetic mechanism known as a d'Arsonval movement. From it I'll show you how to make voltmeters and ammeters and ohmmeters.

How Meters Work. The d'Arsonval meter (Fig. 1) contains a permanent magnet, a coil that is free to rotate about its pivot axis, a needle attached to the coil and a spring that resists displacement of the coil from zero and tends to restore the coil to zero.

The torque that causes the coil to turn is developed when a current passes through the meter coil. The amount is proportional to the current passing through the meter coil. The coil and needle are supported by low friction bearings so that mechanical resistance is low. The pole pieces conduct the flux from the magnet poles and the circular iron core over which the coil rotates. This core and the curved pole piece faces assure that the magnet's flux is always cutting the coil windings at right angles.

The most common basic d'Arsonval meter movement is the 0 -to- 1 milliampere dc meter.

Designing Your Own Meter Instruments. Assume for simplicity in the examples, that all of the work is being done with a $0-1$ ma. meter. The resistance of the meter, if not
known, can be determined by the circuit of Fig. 2. Adjust pot R, which is connected as a high resistance rheostat, for full scale meter deflection. Connect shunt RS across the meter terminals, and adjust it until the meter deflection is reduced to half scale. The resistance to which RS is adjusted is the resistance of the meter movement. The resistance of RS may be measured with an ohmmeter or Wheatstone bridge.
Once you know the basic movement ( $I_{m}$ ) and the resistance $\left(R_{m}\right)$ of the meter, you can increase the current range with a shunt resistance ( $R_{s}$ in Fig. 3.). The value of the shunt resistance for a new range is determined using these formulas:
(a) $I_{s}=I-I_{m}$
(b) $R_{s}=R_{m}\left(\frac{I_{m}}{I_{s}}\right)$

You can buy a $1 \%$ shunt resistor, or you can make the shunt by winding insulated resistance or magnet wire on a form, such as a matchstick or a Bakelite bobbin. Or you can use a rheostat, adjust it to the proper resistance, and lock it with a cement seal between the shaft and bushing. Most shunt resistance values will be so low, though, that it's best to wind your own.
In designing an extended-range meter

2 Circuit for measuring meter resistance. With RS out of the circuit adjust $R$ for full-scale meter deflection. Then connect RS across the meter as shown and adjust it till the meter reads half scale. The meter resistance is equal to the value to which $R$ is adjusted.

3 Extending the range of a current meter with a shunt resistance.

4 Converting a milliammeter to a volimeter with a series resistance.

using a basic meter movement, try to select a range that is a convenient multiple of the meter scale range. Multiples of 10 are best since you can read the meter directly, and have to supply only the decimal point. Two and five are the next best choices for scale number multipliers, and of course, multiples of 10 can be used with these also. (Same applies to voltmeters.)

The circuit for converting a milliammeter to a voltmeter is given in Figure 4. These formulas are used:
(a) $\mathrm{R}^{\prime}=\left(\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{m}}}\right)$
(b) $R=R^{\prime}-R_{m}$

By connecting a switch (Fig. 5) you can make a multi-range voltmeter.

These current range extensions and voltmeter conversions are solved by applying Ohm's law. In the ammeter application of Fig. 3, the meter and shunt are in parallel. Thus, the voltage across the meter equals the voltage across the shunt. Therefore, the current through the meter times the meter resistance equals current through the shunt times the shunt resistance. And the current into the combination equals shunt plus meter current. The voltmeter arrangement of the second problem (Fig. 4) was based on the idea that the current through the shunt must equal the current through the meter, and the sum of the voltage drops across the meter and the series resistor equals the voltage drop across the combination.

What about measuring resistance with a meter? There are several approaches. The first (Fig. 6) utilizes an ammeter and a voltmeter to measure the current through, and the voltage across, an unknown resistance $R_{x}$. Then $R_{z}$ is calculated from Ohm's law. For
example, if V is 4.5 v and I is .005 amp (5 ma.), using:
$R_{x}=\frac{V}{I}$. Then $R_{x}=\frac{4.5}{.005}$, and $R_{x}=900$ ohms. This method is cumbersome, so let's see if we can get around it. If we know the voltage E of the battery, do we need to measure V? No, if $R_{x}$ is much greater than the resistance of the meter measuring the current I. This leads us to the circuit of Fig. 7, where a pot $P$ is employed to adjust the voltage $V$ to a value around which we'll design our ohmmeter. Assuming that we'll use a $1-\mathrm{ma}$, 27ohm meter movement, as before, we'll want the resistance of $P$ to be about 500 ohms. This choice is made on the assumption that the current from the battery should be 10 or more times the current through the meter, for accurate results. The resistance across A and $B$ is zero, if we short these terminals. Therefore the resistance of $R$ and the meter should be 5 v (the design voltage) divided by the meter current, .001 amp . Resistance R, therefore, is 5000 ohms, minus the meter resistance of 27 ohms , or 4973 ohms . Since 5000 and 4973 ohms differ by only about $1 / 2 \%$, you can let $R$ equal 5000 ohms without noticeable error. The ohms scale may be calculated in terms of the I scale on the meter by assuming different values of $R_{x}$ using this formula:

| $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{R}_{\mathrm{x}}}$ |  |
| :---: | :---: |
| Thus, $\mathrm{R}_{\mathrm{x}}$ in ohms | I in ma. |
| 0 | 1.000 |
| 500 | 0.909 |
| 1000 | 0.832 |
| 2000 | 0.715 |
| 3000 | 0.625 |
| 4000 | 0.555 |
| 5000 | 0.500 |




| 8000 | 0.384 |
| ---: | ---: |
| 10,000 | 0.333 |
| 1,000 | 0.250 |
| 20,000 | 0.200 |
| 30,000 | 0.143 |
| 50,000 | 0.091 |
| 100,000 | 0.048 |
| 200,000 | 0.024 |

You can compute additional values yourself. Note that the half-scale meter deflection is equal to $R$ for any meter combination which uses this arrangement. That's a handy piece of information for estimates, before you begin design. The ohm readings may be obtained using a table such as that above, or an ohms scale may be pasted on the meter glass. The switch $S$ is turned on only when the ohmmeter is being used.

The potentiometer $P$ may be made up of a 100 -ohm pot in series with a 400 -ohm, fixed resistance. This arrangement makes the zero resistance adjustment less critical. You can double battery life by doubling the value of $P$ (use a 200 -ohm pot and an 800 -ohm resistance) with a decrease in accuracy that's negligible.

To convert a basic dc meter movement for ac measurements, rectifiers are used. Their difference in forward and back resistance is so great that we generally assume a rectifier acts as a switch. The rectifier circuit of Fig. 8A, not often used with meters, conducts during only half the ac input cycle. The fullwave half bridge of 8 B passes current during all of the input cycle. A 2.7 K resistor for each $R$ works well with most germanium diodes. The output current is about 0.72 times the input current. The full bridge of Fig. 8 C passes current during the entire input cycle also, but presents a greater output for a given input current. The output current is 0.9 times the input current.

The rectifiers may be germanium diodes or copper oxide types. Germanium diodes are more readily available and cover a broader range of frequencies. The GE 1N64, Sylvania

5 A simple 3 -range voltmeter. Resistance values were obtained by the method of Fig. 4 and rounded off to practical values.
6
Determining resistance by the volt-current (Ohm's
law) mefhod.
$7 \begin{aligned} & \text { A simple ohmmeter circuit. In the example in } \\ & \text { the text, } P \text { is } 500 \text { ohms. For less critical zero ad- } \\ & \text { iustment, } \\ & \text { sustitute (for } P \text { ) a } 100 \text {-othm pot in se- } \\ & \text { ries with a } 400 \text {-ohm resistor. }\end{aligned}$
IN34A and the Raytheon IN66 are suitable.
The shunt resistances for current meters and the series resistances for voltmeters of the ac variety may be determined in the same way as they were determined for dc instruments, but bear in mind that the transfer factor of the rectifier arrangement alters the value of the ac voltage required for full scale deflection, and that the apparent meter resistance is changed, too. Use the circuit of Fig. 2 for experimentation, considering the rectifier input terminals as the meter terminals and an ac voltage source instead of a battery to determine the apparent meter resistance. The current through the meter is the voltage across $R$ divided by the resistance of R. Then, the formulas of Fig. 3 and 4 can be applied.

Multimeters. There are many meter kits available at low prices. They're called VOM (volt-ohm-milliammeter) or multimeter kits and are good for measuring ac and dc current and voltage, and for measuring resistance. Although many factors enter into the choice of a meter kit, the primary consideration is meter sensitivity: the number of ohms resistance that the meter movement and the series resistance present between the input terminals of the meter, divided by the corresponding voltage range. This is expressed in ohms/volt. This number is a function of meter movement current for full scale deflection. A 1 -ma meter has a sensitivity of 1000 -ohms/volt; a 200 microamp. meter has a sensitivity of $5000 \mathrm{ohms} / \mathrm{volt}$; and a 50 microamp. meter has a sensitivity of $20,000-$ ohms/volt.

The sensitiviy is important, because when you connect a voltmeter into a circuit to make a measurement, you're connecting a resistance across the circuit. If you connect too low a resistance across the circuit, you'll draw enough current from the circuit to get a wrong voltage reading. Figure 9 illustrates what can happen. When you connect the meter across AB, its resistance is in parallel


Meter rectifier circuits.
with an audio amplifier to produce an audio millivoltmeter, a sound survey meter or an applause meter (Fig. 11A). Figure 11B shows resistance-capacitance meter coupling, and 11C shows transformer coupling to the meter. You can rig up a calibration template for the amplifier volume control so you can use it as you'd use a range switch. You can use the meter's decibel or voltage scales.

The ac voltmeter ranges may be used to measure capacitance of paper, oil or mica dielectric capacitors. Use the circuit arrangement of Fig. 12. Adjust the pot till the voltages at $A$ and $B$ are equal. Then disconnect the pot and measure its resistance R. For the capacitance in microfarads, substitute the value of $R$ in this formula:

$$
\mathrm{C}=\frac{1,000,000}{377 \mathrm{R}}
$$

This circuit works best with higher ac voltages, but 30 v is the top, safe limit. (The voltages across $C$ and $R$ won't add up to the applied voltage.) Get the 60 -cycle ac voltage from a transformer-either a filament transformer or a train transformer will do. And, don't use this arrangement to measure low-voltage electrolytic capacitors, or you may ruin them! You can use a $6.3-\mathrm{v}$ transformer in the circuit to test electrolytic capacitors rated 100 v or more, without damage.

Beginners can use a meter to get a good understanding of electricity. Use it to find out: What happens when you connect batteries in series and parallel; what happens to the battery voltage when you decrease the resistance connected to it; what happens to the voltage and current when resistors are connected in series or parallel; how to apply


Ohm's law; the difference in the resistance of a light bulb before it's turned on and after it has been on a while. Incidentally, never use the ohms scales to measure resistance in a circuit under power. Always disconnect the voltage from the circuit before you measure resistance.
The resistance ranges may be used to check light bulbs and lamp wiring. If the ohmmeter needle deflects at all on the low ohm range, the bulb (or lamp wiring with a good bulb in the lamp and the switch on) isn't open and if the meter needle doesn't hit zero, the bulb or lamp isn't shorted. In the case of a table or floor lamp, if you get this kind of indication, everything's good, except that you're not sure that the switch will work. When you turn the switch off, the meter needle will return to its normal rest position if the switch is operating properly. This is the technique for trouble-shooting radios, electrical appliances and home and car electrical wiring.

Another example of the continuity check just outlined is locating tubes with open heaters in a radio or TV. If none of the tubes in an ac-dc (transformerless) radio light up when the radio is on, the probable cause of trouble is an open tube heater. An open tube heater will also cause a TV set to be inoperative, but won't necessarily prevent all tubes from lighting up. To check tube filaments for
I| Using an amplifier with an ac voltmeter as an audio millivolimeter, sound survey meter or an applause meter (a); R-C coupling meter to amplifier (b); and meter-connected amplifier output transformer (c).

9 lllustrating how a low sensitivity voltmeter upsets low current circuit operation and gives false readings (see text).

10A toy motor used as a generator in this simple circuit has many practical uses. Determine $R$ experimentally.
opens, use the ohmmeter test leads across the heater pins (power disconnected). The pin numbers may be obtained from tube manuals.

An ac voltmeter is useful in checking ac line voltages, transformers, circuit wiring, oscillator output, model railroad and toy circuits and for numerous other applications. The dc voltmeter is useful in checking batteries (check them for voltage with the normal load connected), checking de power supplies, trouble-shooting in radios and car wiring, and for numerous other applications. You should have little difficulty in voltage measurement.
Current measurements are not used as commonly in routine trouble-shooting and experimenting, but are becoming more important with the advent of the transistor. The important thing to remember in making dc current measurements is that the meter is connected in series with source and load. That is, one of the leads connects to the source of voltage and the corresponding connecting point on the device that is receiving power. You might look at it as simply cutting one of the leads in the circuit and connecting the current meter to the lead ends that you've created. The microampere range on the meter is also useful as a current detector in Wheatstone bridge circuits.


## kid Kikalien

By HOMER L. DAVIDSON

WHEN the children are out playing, they can never be found when wanted. With this unit, however, simply by pushing in on a push-button switch you can call them. And then you can hear their reply or listen in on the outdoor happenings.

A DPDT two-position is used to switch from Talk to Listen position. A SPST switch of the momentaryhold type shuts the unit off. By using this type of a switch the battery will be on only when pushed, and outside noise will be present only when listening. The unit responds at once when pushed on, since there are no tubes to warm up.

Circuit Descrip-




Outside speaker can be located near back door, on post in yard or on garage.

com caller is built around four transistors. The first three are 2 N 107 -PNP low-cost types. A 2N255 CBS power transistor is used in the output circuit for greater volume. From the input of the house unit a 45 -ohm voice coil permanent magnet speaker is placed in the base circuit of the first cascade stage. This speaker, used as a microphone, is coupled to the base circuit through a 5 mfd electrolytic capacitor. The signal is amplified, then capacitively coupled to the second transistor stage through a small volume control that controls the output volume. Both emitters of the first two stages are grounded. A base resistor is tied to each collector terminal.

resistor is tied to the collector circuit of the power transistor. A 45 -ohm, paging type speaker is switched into the output of the 2 N 255 collector circuit. As the output

MATERIALS LIST—KID KALLER

Desig.
C1, C2, C3
R1
R2
R3, R7
R4
R5
6, R9
R8
TR1, TR2, TR3
TR4
SW1
SW2

Description
5 mfd miniature elect. capacitors
12,000-ohm, $1 / 2$-watt carbon resistor 120,000 -ohm, $1 / 2$-watt carbon resistor 10,000-ohm, $1 / 2$-watt carbon resistor
$10,000-\mathrm{hm}$ I.R.C. volume control 220,000 -ohm, $1 / 2$-watt carbon resistor 47,000-ohm, $1 / 2$-watt carbon resistor 270-0hm, $1 / 2$-watt carbon resistor 2N107 GE transistors 2N255 CBS power transistor SPST hold-type push switch Rotary DPDT two-position switch Operadio 45-ohm $4^{\prime \prime}$ PM spkr. (microphone) Mid-45 University paging-type spkr. (outside) 6-volt battery, lantern type
impedance of the power transistor is around 48 ohms, this insures a perfect match for amplification.

There will be no need for an output transformer in this type of circuit. The power or voltage to be applied to the circuit is furnished by a heavy duty lantern battery. Since the unit is used only intermittently, the battery lasts a long time.

Construction. Construct the amplifier inside an ICA aluminum case (see Materials List), or make your case, as shown in Fig. 5A, from thin-gage aluminum. Mount all 2N107 transistors directly on a three-lug terminal strip; the power transistor, in a standard 9 -pin miniature socket insulated from the metal chassis (see Fig. 6A). There is no need to construct a heat sink for the power transistor since the unit is not on long enough to get warm.

Cut the front panel from hard-tempered Masonite and drill necessary holes before painting (see Fig. 5B). I used a white enamel spray paint so that the small unit would match the kitchen walls. The wire lead to the outside speaker can go directly through the wall through a small hole. Place colored putty around the hole so there will be no danger of weather damage.

Fasten the amplifier unit to the front panel with four small bolts and nuts and secure the PM speaker to the panel also. Mount the double wafer switch directly above the amplifier chassis (see Fig. 6A). A small metal bracket was constructed from aluminum stock to hold the lantern battery to the front panel. The switching circuit is shown in Fig. 4.

Operation. When the wiring has been completed and the unit installed, except for the outside speaker (which should be wired into circuit but not secured outside), push down on the switch and-with volume half-way up -feedback should occur between outside speaker and microphone speaker.
Then turn the switch to listen position and press the switch again. Again feedback should occur. If it does not, check the wiring of the double wafer switch. Now place the outside
speaker outdoors so that feedback will not occur with someone talking into the microphone speaker.

There are many uses for this small unit. The caller can be used as a regular intercom simply by placing a switch on the back of the volume control. Or the outside speaker can be placed on a post in the farm yard so the housewife can speak to her husband outside. Or you may be a rabid bird watcher. The outside speaker can be placed near a bird house and you can hear them while watching them.

## Tape Cut-Off



- Rolls of plastic, rubber, and friction electrician's tape have no cutting blade to cut strips to length. A piece of metal cut-off blade removed from a wax paper box makes a good cutting edge. Simply cut off a length of blade that will fit loosely around the roll, overlap it on the inside and solder.-Jons A. Comstock.


## Razor Shunts Iron Heat



- That discarded razor can serve a useful purpose as a heat shunt when soldering radio parts leads. Clamp the razor over the lead and it will absorb the soldering heat that might otherwise damage or change the value of the sadio part.


The experimenter's DX special for hidden DX, consisting of a Hammarlund HQ $120 X$ and a Granco 780. Almost any combination of short-wave and FM receivers will do, but it is better if the $5 W$ set is equipped with band spread.
would produce a supersonic audio note which your audio circuits would reject, no speaker could reproduce, and of course you couldn't hear it anyway. Thus WSOM may transmit background music around 105167 (the subcarrier) and no ordinary FM set could ever receive it.

But an AM receiver (detector) responds to

DO YOU own an FM receiver? Chances are pretty good you do, or could, because there are sets in the stores selling for as little as $\$ 29.95$. Second question, are you a DXer? If you are, then you're missing one tremendous bet on the FM band.

We're crazy? FM DX is a cross between that found on the Broadeast Band and VHF TV channels. However, DX listeners are missing some very rare catches between 88 and 108 mc , loggings which compare with the most unusual to be found anywhere in the radio spectrum. Hidden on the band are signals which the ordinary FM receiver will never pick up, which even local listeners will probably never hear. But if you have a shortwave receiver, you can. And at a distance, Rare enough for you?

Most of our readers will be familiar with one class of station in this "hidden" group, the satellites on 108 mc , but unless you have special equipment, these require a tremendous amount of patience. A much more inviting target are the subcarriers used for background music and storecasting. Believe it or not, such signals you will be able to detect (for DX purposes only), log and QSL with only a reasonable amount of effort.

How's it done? By using AM detection instead of FMM. An FM detector measures the deviation between the frequency transmitted and the carrier frequency, subtracts them, and the result is an audio frequency. We have taken WSOM as an example, carrier frequency 105100 kc ( 105.1 mc ). If the signal deviated to 105101 (or 105099) the result would be a 1 kc or 1000 cps audio note. However, should the deviation exceed 15 kc , it
variations in amplitude, and in this sense, not to frequency deviation. The subcarrier does produce amplitude variations. Thus if you could tune an AM receiver to 105167 it would pick up WSOM's subcarrier. The sounds would not be enjoyable listening but recognizable as music, and - more important from a DX standpoint-loggable.

But you don't have an AM receiver that will tune the FM band? You don't need one, the FM set will do it for you. Double talk? No.

An FM set receives a signal from the antenna, passes it through one stage of RF amplification (a few have two) then feeds it into a mixer tube where it's converted to an intermediate frequency, the most common of

## QSL's received-

"Dear Mr. Stanbury:
"Thank you for your report on reception of WRRA located on Connecticut Hill, 9 miles southwest of Ithaca, New York.
"The subcarrier you detected was our 67 kc multiplex subcarrier for background music
"You may... be able to detect bursts of high frequency tone ( 19 kc to 29 kc ) at station identification time and also our 45 kc telemetering frequency at odd intervals."

Northeast Radio Corporation
"Dear Mr. Stanbury:
"This will acknowledge your letter of 7 August 1959, relative to reception of radio signals from the Discoverer Satellite.
"Time, frequency and emission would certainly indicate that the signals you received were from the Satellite . . .

From a Government Agency


QSL for an FM subcarrier. The card was prepared by the author to expedite verification.
which is 10.7 mc . So far, simple. But what you may not know is that the mixer tube radiates a small portion of the signal at the IF frequency. Such radiation passes back into the antenna circuit. If a shortwave receiver is hooked up to the same antenna, there will be no difficulty picking up the FM signal at 10.7 mc (or whatever the IF is). Once you pick it up on your shortwave receiver, you will of course be using that all-important AM detection.

Now that we've reached the antenna, let's consider it a moment. Subcarriers usually produce weak signals. Thus your antenna must receive signals well from that direction. Which direction? Well, that depends upon which DX station you're after. In other words, your antenna must function in all directions. The best solution is a rotor, the kind used for TV antennas. But if you don't already have one, this is also the most expensive. A compromise would be the old fashioned longwire.

Which brings us to a second use for the hidden-DX receivers: That very tough space reception. Most American satellites use either A1 (on/off) or F1 (frequency shift, in this case producing beep effect) modulation to identify their carriers. Both can be received much better on the narrow band set-up described here than on an ordinary broad-band FM receiver.

Now that the equipment is set, you're ready to use it. The first step would be to listen to one or more of your local FM stations so you become familiar with their sound when detected via AM. If you know one of them has a subcarrier, listen to it (look for a subcarrier when the orthodox programming is other than music). Among other things you will note that mixed with the background music will be transmissions from the standard carrier.

Finding a Subcarrier. The process is the same for both local and DX stations. Tune in the stations as well as possible on your FM set, then turn the volume down to nil (but not off). If your shortwave receiver is equipped with band spread, place it at the maximum


No internal adjustments are required on the rig, only a common antenna.
setting and find the carrier frequency on the main dial (around 10.7 mc or whatever the FM IF is). The carrier will be at the point of peak signal, but it can be found much more accurately by waiting for a moment of dead air (even while the announcer takes a breath). It will then appear as a distinctive hum at just one frequency. (In actual practice this extremely fine tuning is accomplished by a slight adjustment of the bandspread.) Once you find the carrier, look for the subcarrier with the bandspread. Assuming the station has a strong signal, if you fail to find it after a couple tries, place the bandspread at its lowest reading, retune the carrier via the main dial and start searching for your quarry again. If you don't have bandspread, tune in the standard carrier, note the frequency reading carefully, then tune back and forth for the subcarrier. When you find it, note that dial setting also.

Although these procedures sound complicated, they will-with a little practice-become simple routine and in the long run prove much easier than any haphazard approach.

Except for identification, which will be obtained from the normal FM transmission, you'll have to garner enough information from the subcarrier to authenticate reception of same. First item is frequency. If the subcarrier appears above the carrier on your shortwave receiver, it will actually be below it and vice versa. However the indicated frequency difference will be correct. Such readings should be as accurate as possible. A bandspread may be calculated via 31-meter SWBC images or more easily by using a 100 kc crystal calibrator. For space reception, pinpoint accuracy is absolutely indispensable.

Other verification data might include timing between records (to the second) and possibly song titles, although many stations keep no record of the latter, so don't depend upon it.


## Hi-Qual Pre-Amp

> This preamp is inexpensive, easy to construct. It has a gain of about 500 flat from 10 cycles to 20,000 cycles. It may be used in apparatus requiring a quality preamplifier circuit, or as a laboratory tool

A speaker connected to the HiQual Pre-Amp input can function as a mike sensitive enough to record heart beats.

The Hi-Qual Pre-Amp meets the specifications outlined, and it can perform the jobs outlined, plus numerous others. In addition to the characteristics mentioned below the title of this article, it is: 1) transistor-ized-uses two high gain GE 2N508 transistors; 2) de operated from 6 v -no line cords to get in your way; 3) battery economy is goodrequires less than $2 \mathrm{ma} ; 4$ ) stabilized for variations in transistor characteristics and temperature; 5) handles inputs from zero to 3 millivolts with minimum distortion. The range may be extended by connecting a volume control in the input circuit (Fig. 4); 3 millivolts input produces a 1.5 v output; 6) input impedance is greater than 10,000 ohms; 7) compact con-struction- $3 / 4 \times 27 / 16 \times 33 / 8$ in. including self-contained battery (Figs. 1 and 2); 8) simple construction-can be built in about an hour with minimum chances of wiring mistakes; 9) flexible-can be built into other equipment or as a separate lab instrument and can be modified to meet varying requirements.

Construction. The top and bottom views of the com-

THE electronics and scientific experimenter frequently needs a high quality preamplifier. The preamp must have a low value of internal noise, hum, and hiss. It should have a reasonably high input impedance, high gain, and the gain should be relatively independent of the power supply voltage. The frequency response should be relatively flat over a wide range of frequencies, and distortion should be low.

An amplifier that meets these specifications may be used as a phonograph, microphone, or tape recorder pick-up preamplifier. It may be used with a crystal detector tuner to drive a power amplifier for hi-fi listening. As a lab preamp a unit meeting the outlined specs can be used to detect small ac voltages, as a meter amplifier for a conventional meter, as a preamp for older, less sensitive oscilloscopes, and for a host of other uses.
pleted amplifier are shown in Figs. 1 and 2; the circuit diagram is shown in Fig. 3. Using these as a guide, proceed as follows:

1) Drill two $1 / 8-\mathrm{in}$. dia. holes in the perforated board for the battery holder. There are four small perforations left between these two holes, and the two holes line up on the second row of perforations. Mount the battery holder and connect the terminals for series connection of the batteries. This is accomplished by turning the battery holder lugs till they contact each other, then soldering them together. Fill the inside eyelets of the battery holders which will contact the batteries with solder. This will minimize the chance of poor-contact or no-contact problems later.
2) Insert the transistor, resistor, and capacitor pigtails through the appropriate board perforations. Note that one pigtail of R2 and


Top view of Pre-Amp.


Botlom view of Pre-Amp.
the collector pigtail of T 1 both pass through the same perforation. The same applies to R1 and base T1; R3 and emitter T1. This also occurs for similar elements of T2 and the counterpart resistors. Be careful to position the capacitors with polarities as shown in Fig. 1.
3) The instructions which follow refer to connections made on the bottom side of the perforated board. Connect C1 ( - ) to junction R1-base T1. Solder and clip off the extra lead length.
4) Connect free end R1 and C2 (-) to collector T1. Solder and clip off extra lead length.
5) Solder R3 and T1 emitter junction; clip off extra lead length.
6) Connect free end C2 (+) to junction R4 and T2 base. Solder and clip excess.
7) Connect free end R4 and C3 ( - ) to junction R5 and T2 collector.
8) Solder junction R6 and T2 emitter; clip excess lead.
9) Bend free R3 and R6 pigtails against board and solder. Connect a $2-\mathrm{in}$. length of wire from this junction to the $(+)$ battery holder terminal.
10) Bend free pigtails of R2 and R5 against the board and solder. Connect a 3 -in. length of wire to this junction. Solder a Mueller Minigator clip to the other end of this wire. The clip is the On-Off switch for the amplifier. To turn the amplifier on, fasten the clip to the $(-)$ battery holder terminal.
The clip lead switch may be replaced with a more sophisticated switch, but this isn't feasible unless the amplifier is housed in a case which has mounting space. The case may be the case which encloses another piece of equipment of which you want to make the preamp a permanent part, or the amplifier may be housed in its own case. The Lafayette MS-159 plastic case is a good fit, and there's room for a switch or control with switch.

The ( + ) pigtails of C1 and C3 are the "high" inputoutput terminals of the amplifier respectively. The junction of R3 and R6 is the "low" common terminal for input and output. A lead may be soldered at this point for connection purposes. Minigator clips may be attached to these in-put-output leads, or other terminals of the user's choice may be provided.

A volume control or volume control with switch may be connected at the input of the amplifier as shown in Fig. 4. The amplifier will begin to distort when the input level exceeds 3 millivolts. The volume control divides higher voltage levels and can be set within
the amplifier input limits. The Lafayette VC-28 miniature control ( 10 K with switch) is suitable for this application and will fit in the plastic case mentioned previously. The 0.5 mfd , 200 v capacitor shown in Fig. 4 should be used if the input signal contains a de component.

However, if the dc voltage involved is greater than 200 , a capacitor with a larger voltage rating must be used.

The input impedance of this high-quality pre-amplifier may be increased by connecting a 68,000 -ohm resistor in series with the preamplifier's high input lead as shown in Fig. 5. This increases the unit's input impedance to approximately

MATERIALS LIST-HI.QUAL PRE-AMP Desig.

Description
R6 $10 \mathrm{ohm}, 1 / 2$ watt, $20 \%$ carbon resistor
R3 100 ohm, $1 / 2$ watt, $20 \%$ carbon resistor
R2, R5 $2.7 \mathrm{~K}, 1 / 2$ watt, $20 \%$ carbon resistor
R1, R4 $680 \mathrm{~K}, 1 / 2$ watt, $20 \%$ carbon resistor
C1. $\quad 30 \mathrm{mfd}$, 15 v miniature electrolytic
C2, C3 capacitor (Sprague TE-1158)
T1, T2 $2 N 508$ transistor (General Electric)
B four 1.5 v penlite cells (RCA VSO-74)
battery holder (Lafayette MS-170)
$27 / 16 \times 33 / 8^{\prime \prime}$ miniature perforated board (Lafayette MS-304)
Minigator clip (Mueller 30)

80,000 ohms ( 80 K ), adequate for most high-impedance sources. Of course, this results in a reduction of gain to approximately $1 / 8$ th of the previous 500 value.

As happens so often as to establish itself as a general rule, conflicting objectives of high voltage gain and high input impedance in transistor amplifiers must be accepted as a fact of life.

The preamp may be used as an amplifier for any reasonably sensitive low-voltage alternating-current meter or the low alternatingcurrent range of a multimeter (Fig. 6). The Heathkit MMM-1 Multimeter has a low range of 1.5 v which is ideally suited to this amplifier.

Meters with low ranges greater than that of Heath's MM-1 Multimeter may be used with the amplifier by using the scale only up to 1.5 v .

The preamp output may of course be used to drive an earphone or a power amplifier. The earphone arrangement might be used


Hi-Qual Pre-Amp can be used with ac voltmeter to measure ac millivolts.
with the amplifier for signal tracing or it might be used in conjunction with a crystal radio input.

Another, but not quite so obvious application of the preamp capitalizes on the distortion created by overdriving. If a signal of 0.1 to 0.2 v is applied to the amplifier input, the output waveform will be clipped and will approach a square wave.-Forrest H. Frantz, Sr.

# A Musical Annunciafor 



With this device hooked into your front door-bell circuit, you substitute the soft, tinkling tones of a music box for the jangle of bell, rasp of buzzer or raucous cling-clang! of chimes

## By HARTLAND B.

 SMITH, W8VVDAn electronically amplified Swiss musical movement (at left front) makes a pleasant door annunciator.

THE heart of this annunciator is its Swiss musical movement. Powered by a miniature $110-\mathrm{v}$, shaded-pole motor, this movement will play a 20 -second excerpt from one of your favorite melodies. (The available tunes range from Adeste Fideles to the Third Man Theme, so you should have little diffculty in finding a composition to suit your taste.)

If this tiny music maker is to be heard throughout your home, however, some form of amplification must be employed-and the amplifier must be ready to operate the instant the front door button is pressed.

For economy's sake, no power should be drawn by the unit during standby periods. Consequently, heater-type vacuum tubes cannot be used. The choice, therefore, lies between battery tubes and transistors. Despite continued transistor price reductions, the capacitors, transformers, etc. needed for transistor circuitry are still relatively expensive. In contrast, the parts required for a vacuumtube amplifier are quite reasonable and, in addition, many are likely to be found in the average experimenter's junk box. For this reason, the unit shown in Fig. 1 utilizes fila-ment-type tubes rather than transistors.
An inexpensive high-output crystal lapel mike converts the sound produced by the musical movement into electrical impulses. These impulses are fed to the control grid of vacuum tube V1 (see Fig. 2). A dynamic mike cannot be employed at this point, be-

cause it would be sensitive to the hum resulting from the magnetic field that surrounds the motor. A vibration pickup mike, as used for electric guitars and similar musical instruments is also impractical, because of its sensitivity to the mechanical noises generated as the motor and its associated gearing operates.

Because of this mechanically generated noise, a relatively shockproof bracket (see Fig. 6) must be used to mount the mike. This bracket makes use of a small section of plastic sponge to deaden vibrations which would otherwise travel up the mount and excite the mike.

In most respects, the four-tube amplifier is of conventional design. Since the power capability of a single 3 Q5GT is rather limited, two of these tubes are operated in parallel. The extra 3Q5GT provides a very useful increase in power output. Parallel, instead of push-pull operation was chosen because no phase inverter tube is needed and an inexpensive output transformer can be employed. Preliminary tests of the completed amplifier showed that its overall gain was so high that there was a tendency toward self-oscillation when the volume control was well advanced, but the addition of resistor R9 (see Fig. 2) provided sufficient inverse feedback to lower the gain and completely eliminate the oscillation problem. The use of inverse feedback also improved the frequency response and minimized distortion in the output stage.

When the annunciator is first plugged into the line, no power can be drawn because relay RL2 is open. However, as soon as the pushbutton is pressed current from the $9-\mathrm{v}$ battery will flow through the coils of RL1, RL2, and RL3. Relay RL2 closes and applies 110 volts to the primary of T2, to the heater of delay relay (RL4), and to the motor of the musical movement. Relay RL1 closes and applies filament power to the tubes. The amplifier becomes operative at once and the tones of the musical movement are heard via loudspeakers placed in convenient spots throughout the home.

Relay RL3 also closes at the instant the button is pressed. The contacts of RL3-as long as RL4 or S1 remain closed-act as a short across the pushbutton. Thus, current continues to be supplied to the coils of RL1, RL2 and RL3 via the contacts of RL3, even


Top-chassis (above) and botfom-chassis (below) views of annunciator circuitry.

after the visitor stops pressing the button.
As the unit operates, the heater in RL4 warms up. After a period of approximately 10 seconds, it becomes so hot that the bimetal arm in RL4 bends far enough to open the normally closed contacts of this relay. At the moment, this action has no effect on the operation of the musical movement or amplifier because the points of RL4 are paralleled by those of S 1 , the miniature snap action switch operated by the cam on the shaft of the musical movement. As soon as the 20second tune has been completed, the cam opens S1, breaking the current path from the 9 -v battery to the coils of RL1, RL2 and RL3. The relays open and the entire unit shuts down until such time as it is reactivated by the push-button.

The cam on the music box is constructed from a short length of volume control shaft and a 6-32 machine screw (see Fig. 5). This

cam must be so positioned that it actuates the lever of S1 when the tune on the barrel has been completed.

The power transformer T2 in Fig. 3A happens to be a surplus unit designed to provide 125 v at 25 ma and 6.3 v at 1 amp . A suitable substitute would be a Knight 62G008 which furnishes 125 volts each side of center-tap,

## C. C. SO. SHAFT EXTENSION ON DRUM OF MUSIC

 MOVEMENTactuating LEAF SPRING OF SWITCH SUPPORT BKT
S"ALUMINUM
STRIP


ACTUATING SI



SHOCK PROOF MOUNT
FOR MICROPHONE
plus 6.3 v . Only half of the high-voltage secondary on the 62G008 should be employed with the center-tap going to R12 and one end of the high-voltage winding going to R10. Since the other end of the secondary and the 6.3 -v leads are not required, clip them short and insulate with electrical tape.

The two small batteries B1 and B2 are subjected to so little use in this particular device that they can be expected to have almost shelf life. Consequently, the battery cost per month will be insignificant.

Constructed on a $11 / 2 \times 51 / 2 \times 9$-in. aluminum chassis, the amplifier is easy to wire since there is plenty of room between the components for the tip of a soldering iron. The armatures of the three small relays are directly connected to the frames. Therefore, RL2 and RL3 should be insulated from the chassis. Figure 3 B shows how these relays are mounted on a thin sheet of Bakelite. Any easily worked plastic can be substituted for the Bakelite.

No knob is needed on the shaft of R4. Once the volume has been set to the desired level, no further adjustment is necessary. Battery B 1 is kept in place with a home-made battery holder (or use a commercially built holder, such as a Keystone type 175). Two L-shaped brackets bent from small pieces of aluminum clamp battery B2 in position. Since the No. 5

|  | MATERIALS LIST-MUSICAL ANNUNCIATOR |
| :---: | :---: |
| Desig. | Description |
| R1, R6, R8 | 2.2 megohm, $1 / 2$ watt (Allied 1 MM000) |
| R2 | 1 megohm. $1 / 2$ watt (Allied 1 MM000) |
| R3, R7 | 220,000 ohm, $1 / 2$ watt (Allied 1MM000) |
| R9 | $330,000 \mathrm{ohm}, 1 / 2$ watt (Allied 1MM000) |
| R10 | 75 ohm, $1 / 2$ watt (Allied 1MM000) |
| R11 | $560 \mathrm{ohm}, 1 / 2$ watt (Allied IMMO00) |
| R12 | $330 \mathrm{ohm}, 1 / 2$ watt (Allied 1MMOOO) |
| R4 | 500,000 ohm volume control (Allied 29M773) |
| R5 | $33,000 \mathrm{ohm}, 1$ watt (Allied 1MM020) |
| C1, C2, C3, C4 | . 01 míd. disc ceramic capacitors (Allied 11L437) |
| C5 | 12 mf ., $150-\mathrm{v}$ electrolytic capacitor (Allied 15 Ll ( |
| C6 | $20-20 \mathrm{mf} .150 \mathrm{v}$ electrolytic capacitor (Allied 15L247) |
| C7 | 100 mf . 15 y . electrolytic capacitor (Allied 16L236) |
| RL1, RL2, RL3 | Sigma 11F-1000G-SIL SPDT Relay (Allied 75P068) |
| RL4 | Amperite 115 Cl OT miniature delay relay (Allied /8PP296) |
| T1 | Stancor A-3822 4 wett universal output transformer (Allied 64G005) |
| T2 | Knight power transformer 125-0-125 v, $25 \mathrm{ma} ; 6.3 \mathrm{v}, 1 \mathrm{amp}$ (Allied 62G008) |
| B1 | $11 / 2 \vee$ size D A battery (Allied 803903) |
| B2 | 9 v battery VS-305 (Allied 80J838) |
| SR1 | Federal 1002A, 65 ma. rectifier (Allied 4A606) |
| S1 | Unimax USML SPDT Subminiature leaf switch (Allied 348848) |
| TS1, TS2 | 2 screw terminal strip (Allied 41H505) |
|  | Crystal lapel Mike (Lafayette PA-9) |
| Battery Holder | for 1 size D cell (Lafayette MS-175) |
| Fuse | 3AG $1 / 2 \mathrm{amp}$ (Allied 52B232) |
| v1, v2 | 105 tube |
| V3, V4 | 305GT tube |
| Musical movement | Reuge ELR 1.18110 v, 60 cps with extended shaft. From Novelties of Distinction, 131 West 42nd St., New York 36, N. Y., or direct from the manufacturer, Reuge S.A., 26, Rue des Rasses, Ste. Croix, |
|  | Switzerland. <br> two octal tube sockets (Allied 40H058) |
|  | one 9-prong miniature socket for RL4 (Allied 41H534) |
|  | two 7-prong tube sockets with shield (Allied 40H194) |
|  | two $13 / 4 / 1$ tube shields (Allied 40 H 198 ) |
|  | open-end chassis $11 / 2 \times 51 / 2 \times 9^{\prime \prime}$ (Allied 80P440) |
|  | fuse clip (Allied 52B292) |
|  | three terminal tie-point strip (Allied 41H501) |
|  | $5^{\prime \prime}$ loudspeaker, 3.2 -ohm voice coil (Allied 810617) wall baffle for $5^{\prime \prime}$ speaker |
|  |  |
|  |  |
| Illinois, and Lafayette Radio, 165-08 Liberty Avenue, Jamaica 33, New York. |  |

pin on a $1 U 5$ and the No. 1 and 6 pins of a 3Q5GT are not connected to elements within the tubes, those terminals on the sockets can be used as convenient tie points to support resistors and capacitors. Grid bias for the 3Q5GT's is obtained from the voltage drop across R12. Capacitor C7, the bias filter capacitor, must be wired with its positive terminal grounded.

Locate the amplifier where output from the speakers cannot get back into the microphone to produce acoustical feedback-put it in the basement or, if you have no basement, in a utility room. Wherever you put the amplifier, make certain that it is out of reach of your youngsters. With the exception of the terminals on the motor of the musical movement, which ought to be insulated with electrical tape, all high voltages appear only on the under side of the chassis. A fuse has been included as a protection against overheating which might result from a shorted component.

Once it has been permanently installed, plug the amplifier into the power line and run a pair of wires from TS2 to a pushbutton near the front door. Run a second pair of wires from TS1 to the main speaker which may be a $4-\mathrm{in}$. or $5-\mathrm{in}$. unit with an impedance of 3.2 ohms. Mounted in a wooden baffle, this speaker can be placed at a convenient point in the most lived-in section of your
home.
Overall volume in any one part of the house need not be high, since additional speakers can be placed in those areas where the sound of the main speaker does not penetrate adequately. These extra speakers can be wired in parallel with the main speaker as shown in Fig. 2. Since the desired volume level at remote locations will normally be less than that of the main speaker, intercom replacement units with $45-\mathrm{ohm}$ voice coils will work effectively in these spots. Each intercom speaker will give adequate acoustical output to cover a room or two, but because of the relatively high impedances involved, even when several are connected in parallel, they will not seriously shunt the 3.2 -ohm main speaker.

The electronically amplified music box, as a replacement for an ordinary door bell or chime has a number of important features, in addition to its basic one of providing pleasant music. Unlike the ordinary bell or solenoidoperated chime, it plays for a period of 20 seconds, whether or not the pushbutton is held down. The sound of a doorbell is usually of rather short duration and is often masked by noises around the house. On the other hand, the continued output from the music box tends to get through such distractions as children's voices, loud hi-fi's, clacking typewriters, pounding hammers, etc.



Standard flashlight batteries or the new, D-size, rechargeable storage batteries may be used in this instant-ready recorder. Its motor-driven fast rewind and erase features make it possible to use the same tape over and over. Depending on where you buy, and what you have on hand, drive parts should cost between $\$ 40$ and $\$ 60$. High precision is not required.

FLICK the mike switch and this batterypowered, $4-1 \mathrm{~b}$. midget starts recording immediately. There's no waiting for tube warm-up and no searching for an electrical outlet. And since playback speed is the standard $33 / 4$-ips used on home recorders, you can play your tapes with loudspeaker volume through a radio or hi-fi unit, instead of the combination mike-speaker; or-if more volume is required on playback-you can play them on any standard home-type recorder that has $33 / 4$ ips speed. A built-in jack plug input also permits you to record voice or music directly from your radio or TV.
The switch on the mike case starts and stops the record motor. For dictation, you can wire in a 4 -prong plug and foot switch for the convenience of a typist. If you need loud-speaker volume, feed the output into an amplifier, or use the input jacks on suitable radios, or the amplifier section of tape recorders.
Construction starts with the metal parts detailed in Fig. 6. First scribe lines at the desired points for cuts and saw and then clamp in a vise along the line, using a square to make sure that the metal is vertical to the vise jaws. Next, lay out the hole locations with scriber and center punch and, with the part held firmly in a drill press vise, start the holes with a $1 / 18$-in center drill chucked in a drill press. Use oil and finish the holes to size with sharp drills. File the three notches in the forward-reverse idler lever, but leave the


## Miniature Tape Recorder

By JAMES E. PUGH

center notch slightly shallow, since it must be deepened later.

Locate the holes in the plastic case with a machinist square and scriber as in Fig. 7, and back up the plastic with a wooden block to prevent chipping when drilling. For the holes for the two tape spindles, use the metal bracket that goes inside the case as a template to assure matching center-to-center spacing. Countersink each hole requiring a Nyliner bushing inside the case and enlarge them with a tapered hand reamer just enough to obtain a free-turning fit with the shaft when bushing is installed. Each shaft must spin freely in its bushing for smooth tape motion, but it cannot be so loose that it wobbles. Nyliner bushings are split at one side to facilitate this kind of adjustment. Insert them by pressing the lower pointed end, of the bushing inward and spiraling clockwise into the hole with your fingers, working from the outside of the case, so the broad flange will be on top.

Next, make up the tape drive parts shown in Fig. 8. The three idler wheels must turn freely on their shafts. Mount the forward and rewind idler lever as in Fig. 9. Tighten the screw on the threaded shaft until the compression washer holds the shaft firmly, but not locked in place. Then, holding the first lock nut with a thin wrench to keep the shaft from turning, tighten the second lock nut. It should now be possible to slide the idler along the length of its slot without rocking.


Speed of the tape drive motor is reduced through a rubber rim idler wheel. A spring holds the motor shaft in contact.


Tape guides guaraniee precise tracking of the tape across the recording head. Adjust felt-covered pressure pad so it lightly presses tape against the head.


Four rechargeable batteries (or four flashlight-type D-size dry cells) are mounted on the bottom panel.
After all tape drive parts are made and rotating parts operating smoothly, carefully remove the Nyliner bushings and clean all parts thoroughly. Then replace the bushings and coat the inner and flange surfaces with light machine oil.

Adjustment. Put the various shafts and wheels in place (Fig. 9) and tighten the wheel set screws allowing $.001-.002 \mathrm{in}$. clearance between wheel and bushing flange. Oil the idler shafts and adjust, making sure that no oil gets on the rubber wheels or on the metal friction surfaces.

## MATERIALS LIST-TAPE RECORDER

| Ne. Req'd. | Size and Description Tape Drive Mechanism | d. |
| :---: | :---: | :---: |
| $125 / 16 \times 59 / 32 \times 613 / 16^{\prime \prime}$ black plastic case with panel |  |  |
| 1 | $2^{\prime \prime}$ O.D. takeup idler wheel (Walsco 1433) | 43N388 |
|  | $2^{\prime \prime}$ 0.D. rewind wheel (Walsco 1433) |  |
|  | $2^{\prime \prime}$ O.D. lower drive wheel (Walsco 1483) | SPECIA |
|  | I' O.D. rewind idler wheel (Walsco 1450) | SPECIA |
|  | 3/4" O.D. pressure roller (Walsco 1458) | PE |

$7 / 8^{\prime \prime}$ dia. $\times 6^{\prime \prime}$ brass for hubs, wheels and tape guides
$3 / 16^{\prime \prime}$ dia. $\times 12^{\prime \prime}$ drill rod for reel, drive and idler shafts
$1 / 4^{\prime \prime}$ dia. $\times 3^{\prime \prime}$ drill rod for pressure and function lever shafts, function lever hub
$23 / 64 \times 1 / 2 \times 18^{\prime \prime}$ precision ground flat stock for hangers and levers
spiral tension washers
$1 / 4^{\prime \prime}$ dia. $\times 3 / 4^{\prime \prime} 6-32$ threaded bushings
3/16" I.D. 3L1-FF Flanged Nyliners (Thomson Industries, Inc.)
$3 / 16^{\prime \prime}$ I.D. 3L2-FF flanged Nyliners (Thomson)
1/4" I.D. 4Ll-FF flanged Nyliners (Thomson)
$1 / 4^{\prime \prime}$ I.D. 4L2-FF flanged Nyliners (Thomson)
$13 / 16^{\prime \prime}$ dia. $\times 5 / 8^{\prime \prime}$ tension spring (General Cement H420-F assortment)
$11 / 8^{\prime \prime}$ dia. $\times 3 / /^{\prime \prime}$ tension spring (General Cement H420-F)
$4 \mathrm{I} / \mathrm{a}^{\prime \prime}$ dia. rubber feet (General Cement H052-F assortment)

Amplifier
1 B1 battery pack consisting of 4 Sonotone rechargeable nickel-cadmium type S-103D batteries
or 4 Eveready Type D99 leakproof flashlight cells
1 M1-6-volt rewind motor (Wilson's of Cleveland, Model 6-100)
1 M2-6-volt DC record motor (Barber-Coleman BYQM 2022)

76P642
1 D1-3.9.volt voltage regulator Zener Diode (Texas Instrument 1N748A)

8E808
V1, V2, V4-2N217 PNP Transistor (RCA) 5E877
V3-2N647 NPN Transistor (RCA) 5E986
L1, L2-Record-PB-Erase head (Shure 815H) 65R584
Magnetic microphone, 1000 ohm (Shure MClld) SPECIAL
Sl-SPST slide switch
S2-5-pole, 3-position wafer switch (Centralab PA-2015)

34B928
Capacitors
5 C1, C2, C3, C5, C6-2uf, 8-v ultra-miniature electrolytic capacitors (Barco PT6-2)

10 L 660
1 C4-.2uf, 75-v ceramic capacitor (Lafayette Radio C-616)
2 C7, C9-100uf, 25-v ultra-miniature electrolytic capacitors

131826
1 C8-150uf, 20-v ultra-miniature electrolytic capacitor

## Resistors

3 R1, R4, RG-3.3K, $1 / 2$-watt, $10 \%$ carbon resistors 1 MM000
3 R2, R5, R10-72K, $1 / 2$-watt, $10 \%$ carbon resistors IMM000
1 R3-4.7K, $1 / 2$-watt, $10 \%$ carbon resistor 1 MM 000
1 R $7-5 K$ miniature trimmer potentiometer (Bourns Wirewound Trimit 271)

31 M M 397
R8-10K, $1 / 2$ watt, $10 \%$ carhon resistor 1 MM 000
R9-3.3K, $1 / 2$-watt, $10 \%$ carbon resistor $\quad 1 \mathrm{MM} 000$
Rll- 150 ohm, $1 / 2$-watt, $10 \%$ carbon resistor
R12-1.8K, $1 / 2$-watt, $10 \%$ carbon resistor
Tape Cartridge
4 1/4 $\times 3 / 4$ " 6.32 threaded bushings (Newark Electric Co.)
$23 / 4 \times 63 / 8 \times 3 / 32^{\prime \prime}$ thick Bakelite sheet
.020 dia. piano wire
$3^{\prime \prime}$ reel of of long play 1 mil tape
96R237
$3^{\prime \prime}$ empty reel
Hardware
J1, J2-phono pin jacks (RCA)
46H213
$\mathrm{J} 3, \mathrm{~J} 4$-sub-min phone jacks (Switchoraft 42A)
battery clips for 1 type-D cell (Keystone 175)
41H517
(176)
$54 J 040$
54J060

## MATERIALS LIST (cont'd)

$13 / 4 \times 13 / 8 \times 23 / 8$ " plastic box for mike and $S 1$
13 ft . length, 4 -conductor cable (Belden 8444)
21 turret terminals USECO 1350C
$2 \times 213 / 10 \times 3 / 32^{\prime \prime}$ Bakelite sheet
$124.40 \times 1 / 2^{\prime \prime}$ fh screws with nuts
$4.40 \times 3 / \mathrm{g}^{\prime \prime}$ rh screws with nuts
$4-40 \times 3 / 8^{\prime \prime}$ th screws with nuts
$6.32 \times 3 / 8^{\prime \prime}$ fh screws with nuts
$6-32 \times 5 / 8^{\prime \prime}$ rh screw with nuts
$6.32 \times 11 / 4^{\prime \prime}$ rh screw with nuts
$6.32 \times 1 / 2^{\prime \prime}$ rh screws with nuts
$6.32 \times 1 / 2^{\prime \prime}$ th screw with nuts
$8.32 \times 1 / 4^{\prime \prime}$ rh screws with nuts
\#6 x $1 / 2^{\prime \prime}$ dia. washers (for cams)
carrying strap brackets
1 shoulder strap (camera stores)
Misc. lock washers, $1 / 8^{\prime \prime}$ decals, plastic spray (Krylon), rosin core solder

Allied Radio, 100 N. Western Ave., Chicago 80, III. Other suppliers are:
Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N. Y.
Newark Electric Co., 223 W. Madison St., Chicago 6, III.
Sonotone Corp., Elmsford, New York (batteries stocked by most electronic supply houses, such as Allied, Lafayette, Newark, etc.)
Thomson Industries, Inc., Manhasset, N. Y. (Manufacturers of Nyliner bearings. These hearings are sold through local bearing supply houses. See yellow pages of the phone book, or write factory for name of dealer.)
Wilson's of Cleveland, 6502 16th Street N.W., Fort Lauderdale, Florida. (Motors sold in most model and hobby stores.)
General Cement Co., 400 S . Wyman St., Rockford, III. (G-C parts stocked by almost every active electronic supply house.)
Walsco Electronics Corp., 3602 Crenshaw Blvi., Los Angeles, California. (Parts stocked at Allied Radio and other electronic suppliers.)



With all of the tape transport parts in place, put the lower function lever in the notch nearest the drive shaft. Press the rubber pressure roller firmly against the upper drive wheel and tighten the set screw. Next, adjust the spiral washer at the notch nearest the drive shaft until the takeup hub rotates when the drive shaft is turned, but when a light pressure is applied to the takeup hub the idler wheel slips. This allows the takeup reel to wind up all slack tape, but prevents it from pulling tape through the drive mechanism. Now connect the motors with temporary leads to the battery for testing.

The rewind idler is adjusted by setting the function lever to the outer position and adjusting the outer spiral washer until the rewind motor turns the rewind shaft at just below its highest speed. At this point the slippage should be very small, but the pressure should not be great enough to retard the motor speed excessively. Now set the function lever to the Neutral (center) position and file the center notch in the forward-rewind idler lever until both idler wheels are free

from the other wheels and both takeup and rewind shafts turn freely. Cover the idler wheels and clean this part carefully each time it is filed to prevent filings from getting on the wheels and inside the case.

To set the record motor tension, fasten the lower drive wheel surface about $3 / 8-\mathrm{in}$. above the lower bearing hanger. Adjust the motor spring tension lever until the drive wheel can be rotated but a noticeable drag from the motor is felt. Too light a tension will allow slippage between motor and tape drive shafts, and too heavy a tension will cause pressure marks in the rubber rim of the drive wheel. The record motor speed is adjusted with a small screw through a hole in the motor case, turning clockwise for more speed. When the upper drive wheel rotates at 120 RPM , the tape will move at $33 / 4 \mathrm{ips}$.

After these adjustments have been made, run the mechanism both forward and in reverse for several minutes. Then put the tape reels on and check to see that the tape feeds through the drive smoothly and is not pulled too tightly by the takeup. If a slight loop is left in the portion of tape between takeup reel and drive wheel it should hold the loop smoothly, gradually becoming smaller as
more tape is wound on the takeup reel.
Wiring. The amplifier is wired as in Figs. 10 and 11. It is best to solder in resistors first, capacitors next, then diodes and transistors. Some of the wire in the four-conductor microphone cable is excellent for wiring as it is small and color coded. Also, short sections of the insulation can be removed from this wire for making color-coded spaghetti.

After the amplifier is completed, wire the upper section of switch S2 (Fig. 11). Mount it in the case and wire in the tape head, motors, and jacks cutting all wires that connect to the amplifier to the approximate length needed. Mount the amplifier in place and finish the wiring. The microphone-speaker is housed in a small plastic box (Fig. 12).

Throw the function switch (S2) to Playback (PB) and listen for a weak motor noise in the earphone. Also check to see that both motors rotate in the correct direction. (If not, reverse the motor leads.) Then adjust the tape pressure pad to hold tape lightly against the tape head. Now you can make a recording. Set the potentiometer R7 about two turns above the full counterclockwise (minimum) position, and the function switch, function lever, and microphone switch to Record.

Hold the microphone about 8 in. from your mouth and speak in a normal voice. Play the recording back and adjust the tape pressure pad for maximum volume but be sure that it is not tight enough to drag on the tape. Now make another recording and, if it's weak, turn the volume control up $1 / 2$ turn (clockwise) and try again. Repeat until the recording is of a suitable volume but not distorted from over-driving. Minor adjustments can now be made in the tape transport mechanism for smoothest recordings, and the recorder is ready to use.
How it Works. The tape feeds from the supply (left) reel across the first tape guide. From here it passes across the erase coil (on the right side of the head). The erase coil thus wipes off any previous recording before it reaches the record coil. The pressure pad holds the tape in contact with the head.

After the tape leaves the recording head it passes between the upper drive wheel and pressure roller and from here to the takeup reel. On playback the erase coil is disconnected by switch (S2) and the recorded signal on the tape energizes the record-playback coil which is now connected to the amplifier input. The amplified signal is fed to the magnetic microphone--now used as an earphone.
A simple three-stage common-emitter amplifier is used. The first two transistors are the PNP and the last the NPN type to allow the mike and record coil return leads to connect directly to common, on both record and playback, without using decoupling filters. High-frequency pre-emphasis is used on Record with flat response being used on Playback providing better quality with minimum distortion.
Motor noise is removed from the amplifier dc power source with V4, which acts as stable

REAM FOR $\frac{3 "}{16}$ SHAFT
(SHORTEN HUB THIS END)
REWINDIDLER(WALSCO 1450)
$\frac{3^{\prime \prime}}{16}$ o hole press fit with shaft


SUPPLY ANO TAKEUP HUBS BRASS:MAKE 2


RECORDER HEAD SHIM
$\frac{5^{\prime \prime}}{64}$ HARD RUBBER-MAKEI


|  |
| :---: |
| TAKEUP IDLER |
| SHAFT MAKE |
| $\frac{3}{16}$ DRILL ROD |

MOTOR SWIVEL BRACKET




voltage regulator. The voltage across the zener diode (D1) is constant at 3.9 as long as the input voltage does not fall below this value. Because this diode is in the base circuit, it determines the voltage output level at the emitter of V4. Since the base voltage is constant, the output voltage will thus be constant regardless of variations at the input (at V4 collector) ; therefore, variations due to motor noise will be filtered out.

Battery Notes. You can use either rechargeable Sonotone nickel-cadmium, or flashlight cells.

The nickel-cadmium cells provide nearly constant output voltage throughout their charge, whereas the flashlight cells drop off as they are used. Constant voltage is an advantage in maintaining motor speed; however, the 5 -volt level approaches the lower limit for best governor operation.

The nickel-cadmium cells are slightly shorter than flashlight cells and a short 4-40 rh screw is threaded into the positive terminal of each battery clip to compensate for the difference (Fig. 4).



PLASTIC FELT MICROPHONE


If you use flashlight cells, select Eveready Type D99, a leakproof type, to avoid damage to the recorder. Jacks are provided to allow recording an external signal; to feed the amplifier output to an external power amplifier; to connect an external power source such as a 6 -volt automobile battery or an auxiliary ac power supply; and to connect the charger to the batteries. When the external power supply is connected, internal batteries are disconnected; when the charger is connected, amplifier and motors are disconnected.

Accessories. The tape cartridge (Fig. 5), allows the recorder to be carried as a portable unit in any position. Plans for a separate power supply appear overleaf this handbook.


## Dual Purpose



By JAMES E. PUGH

DESIGNED as an accessory for the portable tape recorder, this combination power supply will either recharge the recorder storage batteries, or permit you to operate the recorder without batteries on house current.

The unit can double as an experimenter's power supply, and to charge miniature storage batteries used in other types of equipment, provided that the charging current ( 225 ma .) and the charging voltage (5.1, or 6.2 -volt) are the same.

While the four Sonotone rechargeable batteries used in the portable tape recorder 5volt power pack will operate continuously for many hours, they must be eventually recharged. This $a-c$ power supply unit guarantees that you'll be able to use the tape recorder for continuous dictation or desk use, even though the batteries may be exhausted.

Begin construction by drilling all of the holes (Fig. 2) in the aluminum box. Wire the switches and other parts according to Figs. 3 and 4. Flexible \#24 speaker cable is suitable for the a-c power cord and the connecting cord since the wattage of this unit is very low.

The power supply regulator, transistor V1, is mounted on top of the aluminum box to provide suitable heat dissipation. Drill the mounting holes in the box first, and then scribe the outline of the transistor case. Scrape away all paint within this outline to allow better thermal contact with the box; sand the surface smooth, and remove all burrs from the insulator holes to prevent puncturing the mounting insulator.

Make a thin mica mounting washer by scribing the transistor case outline on a piece of thin mica. Drill the two mounting holes, cut along the outline with sharp scissors, and then split the mica into thin layers about .002 , or .003 -in. thick. Coat both sides of the washer with light oil, and mount the transistor with 6-32 machine screws, washers, and


4
SChematic

* ABOUT $1000 \Omega$. FOR DIODE CURRENT OF 8 TO IO MA. OUTPUT FROM V-I EMITTER SHOULD BE APPROXIMATELY $5 . I$ OR 6.2 VOLTS (SEE TEXT)
*     * about t5a for charging current of 200 to 225 Ma nuts. Use an ohmmeter to make sure that the insulation between the aluminum box, and the transistor case is good.
Clip off the ends of one of the unused mica mounting washers, and use it as an insulator on the underside of the box. Make the emitter and base contactors from the contacts of a miniature 7 pin wafer tube socket. When soldering to the transistor contacts, remove the transistor to avoid heat damage. Mark the letters $B$ and $E$ near the base and emitter pins to identify them.

Transformer T1 steps the line voltage down to 13.4 volts $a-c$ after which it is changed to $d-c$ by the full wave rectifier consisting of

Rect. 1, and Rect. 2. Transistor V1 and Zener diode D1 form a voltage regulator that filters and maintains the output voltage at the desired level. The same kind of circuit was used in the motor noise filter of the recorder amplifier circuit.

The power supply output voltage should correspond closely to that of the batteries used so as to maintain more consistent motor speed. For example, with four 1.25 -volt nickel cadmium cells, use a 5.1 -volt Zener diode (IN751A). On the other hand, if you use four flashlight dry cells, 6 volts will result; therefore use a 6.2 -volt zener diode (IN753A) for D1.

## MATERIALS LIST <br> TAPE RECORDER POWER SUPPLY

No. Req'd Size and Description
1 D1-5.1 or 6.2-volt voltage regulator Zener Diode (Texas Instrument IN751A or IN753A, see text)
F1- $3 / 4$ ampere fuse, type $3 A G$; fuse holder (Littelfuse 3510011)

P1-a-c power plug
P2—sub-min phone plug (Switchcraft 750)
Rect. 1, Rect. 2-IN536 silicon rectifiers (RCA)
SI-SPDT tongle switch
S2-SPST toggle switch
T1-26.8 v., 1A. filament transformer (Triad F-40X)
V1-2N301 transistor (RCA)
PLI-NE-51 meon lamp
Capacitors
C1-250uf, 50-v. electrolytic capacitor (Mallory TC-50025) C2-50uf, 12-v. ultra-miniature electrolytic capacitor (Barco P12-50)

## Resistors

RI-120 K, $1 / 2 \mathrm{v} ., 10 \%$ carbon resistor
R2—about $1 \mathrm{~K}, 1 / 2$ watt, $10 \%$ carbon resistor (see Fig. 4)
R3-about 75 ohm, 5 w., resistor (Sprague 27E)
Hardware
$21 / 8 \times 3 \times 51 / 4^{\prime \prime}$ grey hammertone aluminum box (Bud CU2106A)
On-off togyle switch plate
7 ft . lenyth 2-conductor chrome vinyl speaker cable (Belden 8782) insulated tie point
miniature 7 -pin wafer tube socket
pilot light socket, miniature bayonet (Dialco 720)
$1 / 2^{\prime \prime}$ pilot light jewel, white (Dialco 10006-435)
mise rubher grommets, screws, nuts, solder lugs, mica, insulated extruded washers, decals, plastic spray or lacquer, wire resin core solder
Parts available from Allied Radio, 100 N. Wester'n Ave., Chicago 80, Illinois

When charging the Sonotone batteries, resistor R3 bypasses the regulator circuit to provide a constant current. Between 200 and

225 ma . is required for proper charging. About 16 hours are required for a full charge at this rate, though the batteries may be left connected on charge for much longer time without harm.

The pilot light, indicating that the power supply or charger is ready for use, is lit whenever plug P1 is in the 115 -volt socket, since the on-off switch does not control this part of the circuit.

When you connect the accessory unit (Fig. 1) to the recorder, always be sure that toggle switch S1 in Fig. 3 is thrown to the position corresponding to the jack to which the plug P2 is connected. When plug P2 is connected to the auxiliary power supply jack on the recorder, the internal battery pack is automatically disconnected. Be sure that S2 is at Off when connecting and removing plug P2. Also remove the plug from the charger jack when not charging to prevent the batteries from draining back into the charger circuit.

## Polish "Locks" TV Adjusłmen $\dagger$

- When you've just finished making a critical adjustment on the service control of a TV set, "lock" the screw firmly against mechanical shocks by coating its threads with fingernail polish. If the control ever needs readjustment, a drop or two of fingernail polish remover will unlock it in a matter of seconds.-John A. Сомstock.

"Lady wanted to know could we do anything with this. Hasn't made a move for two weeks."


# The Typacode 

By BERNARD DICKMAN

> With the Typacode you can send Morse code as fast as you can type-whether you know the code or not. Thus, even a person who does not know Morse code can test you on your knowledge of it

WITH the Typacode, you press a button indicating the letter of your choice and this letter is automatically translated into the correct Morse code pulses. The number of words per minute you can send out with Typacode depends upon the speed of the motor you use to turn the shorting rotary switch, the "brain" of the device. Assuming five letters to the average word, a $100-\mathrm{rpm}$ motor will permit you to send 20 words per minute; a $60-r p m$ motor, 12 words per minute, and so on.
But motors aren't usually built to run that slowly, and a gear train is needed to reduce their speed (and increase their torque). I used a worm gear with an 80 -tooth gear to get an $80: 1$ gear ratio and reduce the 6,000 rpms of the motor I used to 75 rpm . With my Typacode I can send about 15 words per minute. With speed reduced 80 times, torque is increased 80 -fold, from 1.5 oz.-in. to 120 oz.-in. The motor I used consumes seven watts. The motor you use should have these approximate specifications in order to be able to turn the rotary switch. Most sewing machine or small fan motors are adequate, or try such a motor as the Hurst 60 rpm (RSM60), Allied Radio catalog No. 76P862.

The number of words the device is capable of sending per minute may also be varied by the introduction of a variable voltage transformer to control the speed of the motor. This will help in adjusting word out-

Standard rotary switch is shown in $A_{;}$stop to be twisted off or bent down, bearings to be removed. In B is shown a miniature rotary switch. Its stop must be twisted off or bent down, or plate taken off; bearing to be removed. In $\mathbf{C}$ is shown an altered (as described in text) slide switch for slide-switch version of Typacode.


put to the sender's typing ability and the auditor's understanding.

Construction. First remove the bearings which cause the rotary switch to click when turned (see Fig. 3). Pry them out with a screwdriver. Also, remove all of the "stops" which prevent the switch from turning continuously in one direction.

There are two basic versions of the device. One uses push-button, and the other uses springreturn slide switches. The springreturn slide switch version is somewhat cheaper, but a bit more difficult to operate. Choose the version you want to build (Figs. 1 and 2 show the push-button version), buy materials, and in either case, wire the shorting gang switch first (Fig. 5 for push-button unit, Fig. 6 for slide-switch unit).
If the gang switch is to be turned clockwise by the motor, Fig. 5 (and Fig. 6) is shown as one looks at the front of the switch. If, on the other hand, the switch shaft is to be turned counterclockwise, reverse the connections. That is, assume that the diagram shows the gang switch as you would look at it from the rear, and wire accordingly. (Remember that gears sometimes

| ONE MAKE <br> ON SW.... |  | WITH MORSE CODE EQUIVALENT |
| :---: | :---: | :---: |
| A-…- <br> (SEE FiG.8) | --9A | - |
| B----- | --1,15 | -... |
| C---- | $--1,11$ | --. |
| D----- |  |  |
| E----- |  | - |
| F---- | --6,10 | $\cdots$ |
| G---- | ---5.7 | --- |
| H---- | --13,7 | ... |
| I---.- | --2 | -• |
| J----- | ---9,16 | ---- |
| K----- | ---1,7 | -- |
| L---- | --9,15 | - |
| M---- | -- 5 | -- |
| N---- | --12 | -- |
| O--- | ---5,3 | --- |
| P ---- | ---9,11 | ---* |
| Q---- | -- 5,16 | -->.- |
| R ---- | --9 | --' |
| S ---- | --13 | - |
| T ---- | --8 | - |
| U--- | --6.13 | -*- |
| V ---- | --3.13 | -•- |
| W--- | -- 7.9 | --- |
| X - | --1,4 | . $\cdot$ - |
| Y ---- | --- 1.16 | ---- |
| Z ---- | --5.511 | --.. |
| $\begin{aligned} & \text { PERRD-- } \\ & (H E O D \text { FOR } \\ & \text { SEE FIG. } 8) \end{aligned}$ | - - 9A | -ming Light |

PERIOD--T---
$(H O L D$ FOR THRE FLASHES OF INDICATING LIGHT
SEE FIG. 8$)$

4 CHART FOR WRING PUSH BUTTON VERSION

## MATERIALS LIST-TYPACODE

Push-Button Version
No. Req'd
18 DPST normally open push button switches for letters $B, ~ C, F, G, H, J, K, L, O, P, Q, U$, V, W, X, Y, Z and period (Allied 34 B 997)
7 SPST normally open push button switches for letters D, I, M, N, R, S, T (Allied 34 B 994)
1 SPDT push-button switch for letter A (Allied 34 B 996)
1 four pole, 12 positions per pole, shorting rotary switch (Only ten positions are needed for wiring; two extra needed for spacing between letters (Allied 34 B 906)
$13 \times 7 \times 12^{\prime \prime}$ chassis (Allied 80 PX 464 ). Only $7 \times 8^{\prime \prime}$ is needed for push button keyboard, but since size of the motor will vary, the rest of the space needed is estimated with ample allowance for variations.
1 motor of the type specified in article and gear assembly *
$111 / 2$ v. flashlight battery
1 indicator light assembly (Allied 52 E 475)
1 miniature bulb (Allied 52 E 330)
1 two-pole, 3 positions per pole, shorting rotary switch (Allied 34 B 303)
1 SPST normally open micro switch (Allied 35 B 028)

* Gears for either push-button or slide switch version are available from the Boston Gear Works with its main office at 14 Hayward St., Quincy 71, Mass. and offices throughout the country. Gear combinations are as follows:
For a 100 -1 gear ratio, a 100 -tooth worm gear (Boston Gear G1023; hole dia $1 / 4^{\prime \prime}$ ) and a worm (Boston Gear HLSH; hole dia. $3 / 16^{\prime \prime}$ ) are needed.
For an 80 -1 gear ratio, an 80 -tooth worm gear (Boston Gear G1022; hole dia $1 / 4^{\prime \prime}$ ) and a worm (Boston Gear HLSH; hole dia. $3 / 16^{\prime \prime}$ ) are needed.
For a $60-1$ gear ratio, a 60 -tooth worm gear (Boston Gear G1024; hole dia. $1 / 4^{\prime \prime}$ ) and a worm (Boston Gear HLSH; hole dia. $3 / 16^{\prime \prime}$ ) are needed.
1 coupling between motor and switch or gear assembly
change the direction of rotation of the switch shaft.) For convenience, label the wires with tabs numbered as shown in the diagram. Allow approximately 5 in . of wire for connecting the rotary switch to the push-button or slide switches.

Now drill the holes in the chassis. Arrangement of the keyboard is left to the builder, but it will be found convenient to imitate that of the standard typewriter as closely as possible. Centers of holes for the Allied push-button switches are $3 / 4-\mathrm{in}$. apart in rows; the rows are spaced 2 in .

If you are using springreturn slide switches, adjust the sliding mechanism as shown in Fig. 3.

Next, install the switches. There is a ground lug

SWITCH FOR "A." THE ONLY EXCEPTION TO THE CHART

9

on the Allied push－button switches．Solder two dif－ ferent poles of each two－ pole switch，and one pole of each one－pole switch to these lugs．This saves on wiring since now the poles on each switch are interconnected through the metal chassis．Other－ wise（on slide switches） interconnect the different poles on each switch．The interconnected poles are referred to as＂ground＂ and are connected to＂C＂ on the terminal strip． Now install the motor，ro－ tary switches，micro switch（this，only in push－ button unit），bulb，and bulb socket，and letter the switches．For the push－button switches the letters were typed on a sheet of paper，punched out with a paper punch，

IS TO BE IS TO BE
CONNECTED CONNECTED
TO WIRE（S）


##  <br> B


D－…－－－－－－－－6， 10

E－－－－－－－－－－－－－－






N－－－－－－－－－－－－10
O－－－－－－－－－－－ 10,15


R－－ー－－ー－ーー－－6， 17
S－－ー－ーー－ー－－－5，13
T－－－－－－－－－－－－1， 2
U－－－－－－－－－－－－13，14
V－－－－－－－－－－－－－5，13， 15
W－－－－－－－－－－－－11，17
X－－－－－－－－－－－6，10，12
Y————－ー－ー－－－10，11，16
$\mathbf{Z - ー ー ー ー ー ー ー ー - ~ 5 , ~} 10,18 \mathrm{~A}$
（SEE FIG，10）
PERIOD－－－－－－－－－ 13,4 HOLD FOR THREE FLASHES of indicating Lighti

CHART FOR WIRING
7 SPRING－RETURN SLIDE SWITCH VERSION
then glued to the surface of the button．
Complete the wiring，using the chart Fig．
4 for push－button switches or chart Fig． 7 for slide switches．The first column in the charts refers to the switch，the second to the labeled wire or wires which illustrate connections to switches．

Use．The micro switch is thrown when you want to indicate the end of a word； otherwise the letter＂e＂，a short pulse，is automatically sent．This＂$e$＂is a simplify－ ing factor in wiring，since all letters start with a pulse．This pulse is elongated for a beginning dash．The automatic＂e＂and micro－switch are eliminated on the spring return slide switch unit，the micro switch being comparable to a spacing bar．

On the terminal strip，terminals A and B connect to the power source for the motor （ideally a variable voltage transformer）． Terminals C and D connect to the wires otherwise connected to the sending key of the buzzer，code practice oscillator，etc．
Turn the two－pole，three－position switch to the second position．The motor is on，but the unit is not capable of sending code． Next turn the switch to the third position． Each time the motor makes a revolution the bulb will light，and shortly after a short pulse will be sent（only on the push－button unit）．Depress the micro＂spacing＂switch （on the push－button unit only）；the bulb will still light，but no pulse will be sent．

Directly after the bulb lights press the letter＂a＂．A distinct＂didah＂will be heard． Release＂$a$＂and press＂$b$＂when the bulb lights again．Continue throughout the al－ phabet，checking against a standard table showing code equivalents for letters．
MATERIALS LIST－TYPACODE
No．Req＇d
Spring－Return Slide Switch Version
No．Req＇d
2 SPST normally open spring return slide switch for letters E，N＊
11 DPST normally open spring return slide switches for letter＇s A，D，I，K，M，R，S，T，U，W
13 three－pole，single throw，normatly open spring return slide switches for letters $B, C, F, G$ ，
$H, J, L, O, Q, V, X, Y^{*}$
I three－pole，double throw，spring return slide switch for letter $Z *$
I two－pole，three positions per pole，shorting rotary switch（Allied 34 B 303）
$I \quad 1 / 2$ v．flashlight battary
$111 / 2$ v．flashlight battery
1 motor of the type specified in article，and gear assembly
$7 \times 12 \times 3^{\prime \prime}$ chassis（Allied 80 PX 464 ）．Only $7 \times 9$ in．is needed for slide switch keyboard， but since size of the motor will vary，the rest of the space needed is estimated with ample allowance for the variations
1 four－pole， 12 positions per pole，shorting rotary switch（Only ten positions are needed for wiring：two extra needed for spacing between letters（Allied 34 B 906）
1 miniature bulb（Allied 52 E 330）
indicator light assembly（Allied 52 E 475）
wire，solder，etc wire，solder，etc．
＊The only spring return slide switch available was a 3 －pole，double throw switch．（Allied

EXAMPLES OF WIRING FROM CHART FIG． 7 ON SLIDE SWITCH VERSION


10
SWITCH FOR＂Z，＂THE ONLY EXCEPTION TO THE CHART


## An Electronic Antemna Relay

For the amateur who still throws an antenna switch, this inexpensive electronic relay will do the job automatically on any band up to two meters, and it will increase the sensitivity of most receivers

By JOE A. ROLF, K5JOK

THE one-tube relay shown in Fig. 1 will handle up to 100 watts CW, or 85 watts phone. It is designed for use with any amateur antenna having an impedance of 25 to 300 ohms, and it permits instant CW break-in and greatly simplifies AM transmitter control. It also acts as a low-gain RF amplifier to improve receiver performance.

Figure 2 shows the circuit, Fig. 3 the connections to transmitter, receiver, and antenna. The T-R switch is inserted across the antenna feedline, in parallel with the transmitter. With the transmitter inoperative, the relay acts as a grounded-grid amplifier, allowing signals from the antenna to pass through to the receiver. When the transmitter is keyed, however, the relay's 6 C 4 is blocked and effectively isolates the receiver from the antenna.
The large biasing resistor R1 permits the 6 C 4 to conduct very weak RF signals to the receiver, while the strong signal from the transmitter creates a cut-off bias on the tube that prevents conduction to the receiver. Very little power is taken from the antenna since only a small amount of RF is required to block the 6C4.

The entire relay is built inside a $15 / 8 \times 21 / 8$ $x 4$-in. Minibox. For compactness and simplicity, the unit is powered by the station receiver or transmitter. A Cinch-Jones chassis plug receives the power cable; a miniature
coax antenna jack mounted beside it connects the unit to the antenna terminals of the receiver. A standard coax jack at the other end of the Minibox connects the unit to the antenna feedline. Construction and drilling details are shown in Fig. 4.

The author used a six-prong power plug (Cinch-Jones P-306-AB) on his unit to match an existing cable from his receiver. A threeor four-prong power plug can be used if desired. Also, if the builder prefers, phono jacks can be substituted for the coax antenna jacks -though coax jacks are recommended for high-frequency use to avoid losses and to insure adequate shielding.

The 6 C 4 is mounted on a small aluminum bracket (see Fig. 4) fastened to the bottom of the Minibox. The bracket is set at an angle

## TUBE REPLACEMENT GUIDE

EVERYONE who uses vacuum tubes NEEDS this new 1960 Expanded Edition TUBE GUIDE.
Contains over 2700 substitutes for over 1500
tubes, including radio \& TV receiving tubes,
 ubes used in $\mathrm{Hi}-\mathrm{Fi}$ \& Stereo, foreign tubes and TV picture tubes.
All tubes suggested for substitution have characteristics similar to those they are to replace. FIT INTO SAME SOCKET \& NEED NO WIRING CHANGE.
Two chapters cover complete listing of TV Pix tube replacements including newest $110^{\circ}$ tubes.
Substitutes given for over 225 foreign tubes. Last chapter lists transistor substitutes. The only complete GUIDE featuring all receiving tube substitutions WITHOUT SOCKET CHANGING OR REWIRING. This valuabie book will save you TIME \& MONEY and permit operation of your set even though original tubes are unobtainable.


Guaranteed Money Back in 5 Days if Not Satisfted RUSH COUPON NOW!
H. G. CISIN, Consulting Engineer-Dept. sm-2s Amagansett, N. Y.
Enclosed find \$1. Rush TUBE REPLACEMENT Guide.
I Name .
City
zone. . . . . State


Fill in coupon for a FREE One Year Subscription to OLSON RADIO'S Fantastic Bargain Packed Catalog - Unheard of LOW, LOW, WHOLESALE PRICES on Brand Name Speakers, Changers, Tubes, Tools, HiFi's, Stereo Amps, Tuners and other Bargains.

NAME
ADDRESS
CITY $\qquad$ ZONE
_STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

relay as shown in Fig. 3. The receiver should not be connected during initial tests. Apply power to the T-R Switch and reload the transmitter to the antenna. If the relay is working properly, the transmitter should require only slight readjustment, if any.
The neon bulb NE-2 is a safety device to indicate any dangerous amount of RF across the output terminals of the relay. If this bulb glows when the transmitter is keyed, it is an indication that the relay is not working properly. Check for a bad tube or wire-up.

If the unit is carefully constructed, only enough RF will reach the receiver to provide comfortable monitoring. If the receiver overloads while transmitting, it is probable that RF is entering the receiver through ventilation louvers or an exposed antenna connection (if the receiver has a terminal strip antenna post).

But a coax antenna jack and copper window screen taped over ventilation openings in the receiver cabinet will generally cure this. In some cases, shielding the transmitter cabinet will help. Another remedy for overloading on CW, or feedback on phone, is to reduce the receiver gain control when transmitting.

The cost of this simple electronic antenna relay is only slightly more than that of a good antenna relay, but this unit has the advantage of permitting switchless CW operation with a single antenna system. To transmit, just start keying and the receiver is automatically disconnected from the antenna. On phone, only one switch is needed to put the transmitter on the air.

## A Portable Wireless Intercom



A neat, compact, two-transistor device, this portable intercom also functions as a broadcast band receiver.
This transceiver makes an excellent week-end construction project. It does not require a license!
 broadcast band under FCC limited radiation rules, and therefore does not require a license (limit communication distance to 75 ft .), and the receiver can be used for BCB reception. Components will cost between $\$ 10$ and $\$ 15$. For two-way communications, of course, you need two units. But with one unit you can indulge in oneway communication by using a broadcast receiver as the second station.

Trouble-Free Construction. The leads connecting to the Send-Receive switch, and those in the RF portion of the unit should be kept short and direct. When construc-


Circuit board wiring.


Parts call-aut in case.
tion is completed, you may have to redress them to eliminate oscillation. First, remove antenna coil L1 from its Masonite mounting strip. Then cut shaft of volume control R4 to a length of $1 / 4 \mathrm{in}$. Then turn connection of battery holder lugs over with pliers to form series connections and solder (see Fig. 3). Fill contact eyelets with solder.

Jumble-wind coupling coil L2 from 25 ft . of $7 / 41$ litz wire on $3 / 4-\mathrm{in}$. length of $1 / 4-\mathrm{in}$. dia. ferrite core. Leave $11 / 2 \mathrm{in}$. connecting leads. Apply a coat of Duco cement to hold the windings in place. Clean and tin the ends of the leads.

Drilling and Cut-Outs. The circuit board as purchased is cut to correct size. Holes must be drilled in it as shown in Fig. 4. The front panel as purchased is cut to correct size and contains the four corner holes required to fasten it in the case. The other hole and switch cut-out locations are shown in Fig. 5. The cut-out for the Send-Receive switch is made by drilling a series of adjacent holes, finished with a keyhole saw and a file. The hole in the case for mounting the antenna is $5 / 32$ in. dia. placed 1 in. from the front and 1 in . from the righthand side on the top of the case.

Front Panel Component Mounting. Mount C1 and C2. The dials are removed by loosening the knurled decorative head screws. These capacitors, because of their compact construction, sometimes develop shorts. Connect an ohmmeter across each of them in turn and rotate the shafts. If either of the capacitors is shorted, send it back to the supplier for replacement. Don't attempt a repair.
Mount the volume control (R4), the Talk-Listen switch (S2) and the loudspeaker (SPKR). Place the knob on R4 and the handle on S2. Fasten the 1-in. machine screws (which hold the circuit board in the final assembly) to the front panel.
Circuit Board Wiring. Mount transformers L3 and L4, and mount the antenna coil L1.

Fasten the coil with insulated hook-up wire or cord passed through the circuit board and tied around the coil. A few drops of Duco cement will hold it in place.

Using Figs. 1, 2, and 3 for guidance, wire the circuit board. Mount the components as required in the progress of the wiring. Note that most of the component pigtails pass through the circuit board. The pigtails are bent over and soldered together to form the circuit wiring. This produces a neat job, permits you to make short connections, and makes the compact size of the unit possible.

The leads which are to be connected between the circuit board and the panel wiring of the circuit board should be connected during the wiring of the circuit board. Leave these leads about 6 in . long and cut to length later when the wiring board and panel assemblies are integrated. Use wires of different colors and keep a record of the code to make integration of the circuit board and front panel easier.

Front Panel Wiring. Wire R4-S, C1, C2 and the portion of the S-2 connections that do not tie into the circuit board wiring. The gimmick C3 is simply a piece of hook-up wire connected to S2 and twisted loosely around the lead from S2 to C2. Wire insulation acts as the dielectric. In making connections to S2, be careful to avoid bending or exerting undue pressure on the switch contacts and lugs. Also be cautious about exerting pressure on the switch wafer.

Mount the circuit board on the $1-\mathrm{in}$. machine screws provided on the front panel for this purpose. The nuts near the ends of these screws (Fig. 2) should be adjusted for correct spacing of the mounting board from the panel. Be sure that there aren't any shorts between the switch S1 and the circuit board. The lugs of S1 may have to be bent slightly to the side.

Make the interconnections between the front panel and the circuit board. The secondary of L4 connects to SPKR and several leads from the circuit board connect to R4-S1 and S2.

Mount the battery holder on the speaker magnet frame by passing a loop of wire around the holder and frame on each side of the magnet. Twist the ends together on the bottom side. A drop of Duco between the speaker and the battery holder will tend to make the mounting more solid. Connect the battery holder into the circuit. Insert the batteries in the holder, observing correct polarity. Then provide a lead from S2A to the antenna and place the assembly in the case. But don't fasten the four panel holding screws yet.

Testing Operation. Turn switch S1 on and turn R4 clockwise for maximum volume. Tune C1 to a local broadcast station. If you can't pick up a station, extend the antenna. If you still can't pick up a station (assuming
 CIRCUIT BOARD, FRONT VIEW


5
PANEL, FRONT VIEW
you're within 5 miles of a 250 -watt station or within 10 miles of a 5 KW or more powerful station), recheck the wiring. Incorrect positioning of the S2C and S2D leads may cause audio feedback. To cure consistent squealing and whistling, redress these leads.

When you have broadcast reception, remove the set from the case and move the position of the lead on the antenna end of L1 relative to C 4 for maximum gain at the highfrequency end of the broadcast band. Then decrease the volume control setting to about half of full setting. If the set squeals, decrease the coupling between the L1 lead and C 4 till squealing quits.

Turn a broadcast receiver on and tune to a frequency at which you don't receive a broadcast station. Then, from a position near the receiver, with the intercom on and the antenna pushed down, push S 2 to the send position. Adjust C2 till the intercom carrier comes in on the broadcast receiver. The


Side view of front-panal mountings.
coupling of gimmick C3 may have to be increased to attain a signal or decreased to minimize squealing and distortion at the receiver. Audio feedback due to coupling between intercom and receiver causes squeals also-but occurs only when receiver and intercom are within audible "hearing" distance.

| Desig. | MATERIALS LIST-WIRELESS INTERCOM |
| :---: | :---: |
| R2, R6 | $270 \mathrm{ohm}, \mathrm{1/2} \mathrm{watt} \mathrm{carbon} \mathrm{resistor} 10 \$,  \hline R3 & $33 \mathrm{~K}, 1 / 2$ watt carbon resistor, $10 \%$ |
| R5 | 100K, $1 / 2$ watt carbon resistor, $10 \%$ |
| R1 | 270K, $1 / 2$ watt, carbon resistor, $10 \%$ |
| R4-S | 10 K miniature volume control with switch (Lafayefte VC-28) |
| C3 | gimmick (see text) |
| C4 | 100 mmf ., 1000 v. ceramic capacitor (Sprague $5 \mathrm{GA}-\mathrm{Tl}$ ) |
| C6, C8, Cll | . 01 mfd., 50 v. ceramic capacitor (Sprague TG-S10) |
| C5, C7, C9 | $25 \mathrm{mfd} ., 6 \mathrm{v}$. miniature electrolytic capacitor (Sprague TE-1091) |
| Cl0, Cl2 | 100 mfd ., 6 v. miniature electrolytic capacitor (Sprague TE-1102) |
| C1, C2 | 365 mmf . miniature variable capacitor (Lafayette MS-445) |
| T1 | 2N168A transistor (General Electric) |
| T2 | 2N407 transistor (Sylvania) |
| D | 1N66 diode (Raytheon) |
| S2 | 4P2T spring return lever action switch (Centralah 1457) |
| L1 | ferrite antenna loop coil (Miller 2004) |
| L2 | $25^{\prime} 7 / 41$ litz wire wound on $3 / 4^{\prime \prime}$ length, $1 / 4^{\prime \prime}$ dia. fervite core. (Lafayette MS-331 is a $7 / 2^{\prime \prime}$ length of ferrite core and Belden 8817 is a $100^{\prime}$ length of the wire) |
| L3 | 10K to 2 K miniature driver transformer (Lafayette TR-96) |
| 14 | 2K to 10 ohm miniature output transformer (Lafayette TR-93) |
| SPKR A B | 10 ohm, 21/2" Ioudspeaker (Lafayette SK-66) |
|  | miniature telescoping antenna (Lafayette F-343) |
|  | four 1.5 v . penlite cells, series connected (Burgess No. 7) |
|  | battery holder (Lafayette MS.170) |
|  | miniature knob (Lafayette MS-185) |
|  | $27 / 16 \times 33 / 8^{\prime \prime}$ miniature perforated circuit board (Lafayette MS-304) |
|  | $2 \times 33 / 4 \times 61 / 4^{\prime \prime}$ Bakelite case (Lafayatte MS-216) |
|  | front panel for case (Lafayette MS-217) . |

Components for this project may be obtained from Lafaystte Radio, 100 6th Avenue, New York 13, N. Y.

The antenna may be extended to increase range, but don't open it far enough to permit reception beyond 75 ft . The intercom will function best for communication when held upright with the antenna vertical. It will function best as a broadcast receiver when the antenna loop is horizontal. It is extremely directional and selective in this plane.

Operating Principles. The remote wireless intercom is an intercom that permits talk-and-listen operation with another unit without requiring connecting wires. The speaker functions as mike and speaker. Separate talk and listen tuning controls permit tuning to any desired frequency with easy switching from talk to listen without having to retune. To receive, Cl must be set for the frequency that C2 of a second intercom is tuned to in order to receive it. It is best to tune the two intercoms and then lock the capacitors. Don't depend on dial calibration to do the job.

The wireless intercom employs only two transistors and one diode. In the listen function T1 acts as an RF amplifier, and diode D1 rectifies the signal to provide an audio voltage signal. This signal is fed back through T1 which amplifies the signal again. Then the signal progresses to output stage T2 and the loudspeaker. The receiving circuit achieves considerable gain and selectivity with minimum equipment through the use of good components and the exercise of design innovations.

On the talk function, the coupling from the collector of T1 to the antenna and base of T 1 is increased by C 2 to produce broadcast frequency oscillation. The input and output connections to T2 are changed by S2 to make the speaker function as a mike and to make T 2 function as a modulator for T 1.

## Dry Battery <br> Tester-Charger

A single unit to test and charge flashlight, transistor radio and other small batteries

By W. F. GEPHART

RECHARGING or boosting small dry batteries can be worthwhile if you have several flashlights, battery radios or other battery-powered equipment. Properly used, a charger can triple or quadruple the lift of batteries, making the investment in a charger worthwhile. The unit shown in Fig. 1 also includes a tester to show when "recharging" is desirable. (Since dry batteries are essentially primary cells in which a chemical reaction takes place, true recharging is not possible. However, rejuvenation, which will extend the life of the cells, is possible. We'll call this recharging.)
Recharging must be done before the battery is completely exhausted. New batteries usually read about $1.5 v$ per cell (without load) on the average meter. Under normal load (about $25 m a$ for a battery made up of penlight cells, and about 150 ma for the larger flashlight batteries) the voltage of a fresh cell should not drop more than $10 \%$. Thus, a type "D" flashlight battery in top condition ought to test at $1.5 v$ or better without load, and not less than $1.35 v$ with a 150


Overall view of charger. Battery clip arrangement may be varied to meet individual needs.


ma load. When it drops below these levels, it should be recharged. Recharging is not too effective when the voltage (with or without load) is below twothirds of the new-condition voltage.

Bear in mind, too, that the battery must be placed in service promptly after recharging. The shelf life of recharged batteries is short (probably due to the limited chemical action that takes


Inside view of unit. All parts are mounted on back of front panel.
place). Even so, the drop in voltage after charging is the greatest in the first 24 hours.

No one seems quite sure what actually happens in dry battery recharging, and some experimenters claim the best results with ac charging voltages, some with $d c$, and some with a combination. This unit uses unfiltered, fluctuating $d c$, which seems to give the best results in the shortest time. Filtered dc (secured by placing a large capacitor across rectifier output) seems to give about the same results, but requires a charging time of 12-20 hours.

Here are some results with unfiltered dc and an hour's charging time:

| Type Battery \& Service |  | Before Charge | Immediately After Charge | $\begin{gathered} \text { 2-5 Days } \\ \hline \text { Later* } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Two "D" Cells | No Load | 1.35 v | 1.52 V | 1.40 V |
| (Flashlight) | Load | 1.20 v | 1.37 v | 1.35 v |
| Three "D', Cells | No Load | 1.33 v | 1.40 v | 1.35 v |
| (Strobelight) | Load | 1.15 v | 1.33 v | 1.30 v |
| Two "C" Cells | No Load | 1.35 v | 1.60 v | 1.45 v |
| (Flashlight) | Load | 1.15 v | 1.50 V | 1.35 v |
| 9 v Transistor\# | No Load | 7.5 v | 8.7 v | 8.0 v |
| (Radio) | Load | 2.0 v | 7.2 v | 6.0 v |
| * shelf life time; | t in servic |  |  |  |

We see that particularly in the case of the transistor battery, recharging is not too effective when the battery nears exhaustion. The charging rate must be fairly low, with a range of $5-30 \mathrm{ma}$ recommended for batteries made up of penlight cells, and a range of 50-200 ma for the larger cells, such as "C", "D", and "A" cells.

Schematic Fig. 2 shows that switch $\mathrm{S}_{3}$ controls the function of the unit. On Positions 1 and 2 , used for testing, proper meter multipliers are switched into the circuit for reading the battery voltages, and load resistors are cut in by pressing switch $\mathrm{S}_{2}$. When switch $S_{3}$, is on Positions 3 and 4, ac power is on, and the $d c$ output is fed through the meter (with proper current shunts) to the

|  | MATERIALS LIST-BATTERY CHARGER |
| :---: | :---: |
| Desig. | Description |
| Rx | $56 \mathrm{~K}, 1 / 2$ watt (required only if not included in PL) |
| R1 | $20 \mathrm{ohm}, 1$ watt |
| R2 | 200 ohm, 4 watt potentiometer (Mallory M200PK) |
| R3 | 1500 ohm l\% precision (see text) |
| R4 | 15K 1\% precision (see text) |
| R5 | 10 ohm, $1 / 2$ watt |
| R6 | $330 \mathrm{hm}, 1 / 2$ watt |
| R7 | .66 ohm $1 \%$ precision (see text) |
| R8 | 7.14 ohm 1\% precision (see text) |
| S1 | two-pole, 4-position rotary switch (Mallory 3226J) |
| S2 | SPST push button, normally open |
| S3 | five-pole, 4-position rotary switch (Mallory 1335L) |
| T1 | 6.3 v CT 1 amp filament transformer (Merit P-2944) |
| T2 | 6.3 V 1/2 amp filament transformer (Merit P-2964) |
| Rect. | bridge-connected selenium rectifier: anc input-15 v maximum, at 200 ma (Federal 1016) |
| PL | pilot light holder for NE-51 lamp (Dialco Series 95408X and 942208 have built-in resistor Rx) |
| M | $0-1$ milliammeter |
|  | Steel cabinet, $61 / 2 \times 71 / 4 \times 9^{\prime \prime}$ (Bud C-1585), NE-51 lamp, 3 knobs, 2 binding posts, battery holders as desired, line cord, miscellaneous hardware |

battery, with terminal polarity reversed. The proper charging voltage and current is selected by switch $\mathrm{S}_{1}$ and rheostat $\mathrm{R}_{2}$. Two filament transformers, with their secondaries wired in series through $S_{1}$, provide ac input voltages to the rectifier of $3.15,6.3,9.45$, and 12.6, which are sufficient for all batteries up to 9 volts. Resistor $\mathrm{R}_{1}$ is a limiting resistor to prevent the current from reaching excessive levels.

All parts (except battery holders and terminals) are mounted on the front panel of a small sloping-front cabinet, as shown in


Figs. 4 and 5. The layout for the panel is shown in Fig. 3, except for the meter mounting screw holes, which should be drilled to fit the meter being used.

The values shown for resistors $R_{3}, R_{4}, R_{7}$ and $\mathrm{R}_{8}$ are applicable only to a $0-1 \mathrm{ma}$ meter with an internal resistance of 100 ohms . This is a standard 1000 ohms/volt movement, but values for other meter movements can be calculated with the formulas top of opposite page for the ranges shown on Fig. 2:


Im is the full scale deflection of meter in amperes, Rm is the internal resistance of meter in ohms.
Wire the primaries of the transformers and pilot light first. Then check polarity of the
secondary leads of the transformers so that series wiring will give $12.6 v$. If the polarity is incorrect, the two secondaries will buck each other, and give no output voltage when wired in series. Complete the wiring.
The selection of the number and types of battery holders mounted on the cabinet will depend on individual needs. Two binding posts, wired in parallel with the battery holders, are also provided. Several sets of leads, using the most often needed battery plugs can then be used with the binding posts for those batteries that do not fit in the holders.

To use the unit, plug it in, turn $\mathrm{S}_{1}$ to "Low", $\mathrm{R}_{2}$ to full counterclockwise position, and $\mathrm{S}_{3}$ to " 15 V Test." Put the batteries in the proper holder (or attach to leads), and switch $\mathrm{S}_{3}$ to the appropriate scale and read the no-load voltage. Then press $\mathrm{S}_{2}$ to read the voltage under load. Resistor $\mathrm{R}_{5}$ provides a 150 ma load with $1.5 v$, and $\mathrm{R}_{6}$ provides a load of about $14 m a$ at $4.5 v, 18 m a$ at $6 v$, and $27 m a$ at $9 v$. Next, switch $\mathrm{S}_{3}$ to the desired charging current range, and set the charging rate by adjusting $S_{1}$ and $R_{3}$.

Generally, charging for an hour or two at the rates mentioned above will be effective. The rate may be increased, but under no conditions should the battery be permitted to get warm. Longer charging times can be used, with varying effectiveness, depending on the charging rate and battery condition, but the unit should be watched. Sometimes excessive charging, either in current rate or time, seems to break the cell down, and the current rises, increasing the damage.

## Unscrewing the Inscrutable Those Darn Decibels!

by OI' Rock

Few terms are as frequently misused or widely misunderstood in electronics as is the decibel.
The decibel system merely compares signal power levels. Properly used, it makes possible a great simplification of arithmetic.
Decibels can be used to compare any two signal power levels of the same kind, in either an acoustical or electrical system. Or, one may compare the power of a given signal with a previously agreed-upon standard. When the signal being considered is compared to a similar, hypothetical, one-milliwatt signal, we speak of the level" of the signal concerned, in DBM. Further, one may compare, in decibels, the strength of a jiven signal to that of the noise power in the zame system-the "signal to noise ratio."
Let's get straight on the basic facts: First, the decibel measures ratios, that is, how many times Freater or less-powerful is the signal concerned, Is compared to the reference signal. Second, lecibels are not measured upon an ordinary rithmetical scale, but rather upon what engi-
neers call a logarithmic scale. This is perhaps the most confusing point to the uninitiated. Twice as many decibels do not mean twice as strong a signal, for instance. Here's how a decibel scale works:

| Ratio of Signal Power | DB Greater | DB Less |
| :--- | ---: | ---: |
| Signal powers equal | 0 DB | 0 DB |
| First signal twice as strong, or one-half |  |  |
| as strong as the other | +3 DB | -3 DB |
| First four times as strong or weak | +6 DB | -6 DB |
| First ten times stronger or weaker | +10 DB | -10 DB |
| First 100 times greater or less | +20 DB | -20 DB |
| First 1000 times greater or less | +30 DB | -30 DB |
| First one million times greater or less | +60 DB | -60 DB |

Any good electrical engineering reference book will show you how to obtain decibel values or corresponding power ratios for the intermediate values, such as $-36 \mathrm{DB},+57 \mathrm{DB}$, etc.
A convenient feature of the decibel system is that amplifier gains and circuit losses, when each is expressed in DB, may be added and subtracted by simple arithmetic directly, to evaluate simply the performance of an entire communication system.


## The Little Red Hot

## This compact, attractive reflex receiver is so small it fits easily into pocket or purse



A set that's small but one that will scoop up rock ' $n$ ' roll from local broadcasters, commercials and all.

TO get plenty of gain in the Little Red Hot transistor T1 (see Fig. 2) amplifies the signal twice, once while it is still RF and then again when it is AF after detection by diode D. The audio output of T1 is introduced to the base of transistor T2 through the audio driver transformer L4. The impedance match between T1 and T2 provided by L4 affords considerably more gain than you could expect from resistancecapacitance coupling.

Though not apparent from the circuit, and though not enough to make the set oscillate, there is positive feedback in the RF stage, resulting from the relative placement of the components in the case. This feedback feature and the high $Q$ of the antenna coil (L1) make the set quite selective in spite of the fact that it has only one tuned circuit.

Cost of the components for the Little Red Hot will be a little over \$15. Construction time will vary with the builder's experience, but the compact construction makes this project a delightful experience in miniaturization.

Construction. The construction of this receiver may be accomplished most efficiently by pursuing the task in these phases:

1) Adapt parts.
2) Make the circuit board.


Back view before assembly.
3) Mount parts.
4) Wire the circuit board.
5) Complete wiring and assemble.
6) Test, adjust and debug.

Begin by cutting the volume control shaft to a length of $3 / 8 \mathrm{in}$. Place the portion of the shaft to be eliminated in a vise and cut with a hacksaw. Now remove antenna coil L1 from its Masonite mounting board. Replace the paper tape around the coil ends to hold and protect the windings.

Make coils L2 and L3 using the data shown in the Materials List. Coat these coils with Duco cement to prevent unwinding of the turns.
The number of turns is not too critical, so if you slip a bit in counting them, don't worry about it.

Next, place two layers of cellophane tape about $3 / 8 \mathrm{in}$. wide around the edges of the speaker frame on the back of the speaker to prevent the speaker frame from shorting some of the receiver wiring which it would otherwise touch.

The circuit board is cut from a miniature perforated board according to the layout shown in Fig. 4. Speaker and tuning capacitor cut-outs are made by using the hacksaw blade removed from the saw frame. Starter holes can be made with drill and taper reamer. The slots for the transformers (L4 and L5) are also made with the hacksaw blade. Drill a $1 / 8-\mathrm{in}$. starter hole for the volume
control shaft and ream to size, or simply drill using a $3 / 8$-in bit. When cutting and drilling is completed, dress the edges of the board and the cutouts with a file.

Use Fig. 3 as a guide for mounting parts. Mount volume control-switch R7-S and transformers L4 and L5 first. The transformers are mounted by bending their mounting lugs down $90^{\circ}$ so they can be inserted in the circuit board slits. With the transformer mounting lugs inserted in the circuit board slits, press the transformer against the board, and bend the lugs over on the front of the circuit board. Duco cement placed between the base


4 CIRCUIT BOARD LAYOUT - BACK VIEW


Front view of circuit board.
of the transformers and the circuit board will stabilize the mounting and may bail you out if you break a transformer lug in the mounting process.

Mount L2 and L3 by fastening with Duco cement, but go easy on the cement because you may have to loosen and re-orient these coils. The remaining components are mounted in the process of wiring the circuit board.

| Desig. | materials list-little red hot Description |
| :---: | :---: |
|  | 1/2 watt carbon resistors, $10 \%$ tolerance |
| R6 | 100 ohms |
| R2 | 470 ohms |
| $R 5$ | 2.7 K |
| R1 | 10K |
| R4, R8 | 15K |
| R3 | 47K |
| R7-S | 10K miniature volume control with switch (Lafayette VC-28) |
| C6 | 100 mmf. Mini Kap ceramic capacitor (Lafayette DM-101) |
| C2, C4, C8 | .01 mfd. $75 v$. subminiature capacitor (Lafayette C-612) |
| C9 | 1 mfd ., 6 v . subminiature electrolytic capacitor (Lafayette P6-1) |
| C3, 77 | $30 \mathrm{mfd} ., 6 \mathrm{v}$. miniature electrolytic capacitor (Lafayette CF-104) |
| C5 | $100 \mathrm{mfd} ., 15 \mathrm{v}$. miniature electrolytic capacitor (Lafayette CF-126) |
| Cl | 365 mmf. miniature tuning capacitor (Lafayette MS-445, includes tuning dial) |
| $\underline{L 1}$ | flat ferrite antenna loop coil (Miller 2004) |
| L4 | $10,000 \mathrm{ohm}$ to $2,000 \mathrm{ohm}$ subminiature transformer (Lafayette TR-98) |
| L5 | 2,000 ohm to 10 ohm miniature output transformer (Lafayette TR-93) |
| L2, L3 | Coils L2 and L3 are jumble-wound with Belden 8817 litz wire on $1 / 4^{\prime \prime}$ dia. ferrite cores (saw or break off of Lafayette MS-331). Wind $25^{\prime}$ of wire on a $3 / 4^{\prime \prime}$ length of core for L2, and $15^{\prime}$ on $1 / 2^{\prime \prime}$ of core for L. 3 |
| T1 | 2 N 412 transistor (RCA) |
| T2 | 2 N 321 transistor (GE) |
| D | 1N60 diode (Raytheon) |
| SPKR | 11/2" PM loudspeaker (Lafayette SK-61) |
| B | 9r. transistor radio battery (Mallory TR-146R) volume control knob (Lafayette MS-185) |
|  | miniature perforated hoard (Lafayette MS-305) |
|  | case (Lafayette MS-424 ivory or MS-427 maroon) |
| All components for this project are available from Lafayette Radio, Dept. SM, 165-08 Liberty Avenue, Jamaica 33, New York. |  |

along Use a nections as you go Use a hot clean iron and rosin core solder. Solder quickly. Miniature components, particularly transistors and diodes, may be damaged by soldering iron heat applied for too long a time. Be cautious about electrolytic capacitor and battery polarities in making connections.

Mount T2 first and then wire C3, C7, R5, R6, R4, and C5 into the circuit. Then wire R3, R1 and C2. The connection of C4, L2 and L3 follows. Don't cut L2 and L3 leads too short; you may have to reverse connections later.

Next, mount diode $D$ and connect $\mathrm{C} 6, \mathrm{R} 7$, R8 and C9 into the circuit. Mount T1 and complete connections to L2. Mount and connect R2 and C3.

Now recheck the wiring for correctness and examine the circuit board for poor connections and shorts. Then attach leads for C1 and for battery connections. Solder battery connection lugs on the battery leads, connect C1, and connect the L5 secondary leads to the loudspeaker voice coil lugs. Connect L1 into the circuit.

Whether it is best to place the Little Red Hot in the case or leave it out for test, adjustment and debugging is a tossup. If you don't place it in the case, care must be exercised to prevent shorting of components, and the tuning capacitor (C1) is difficult to adjust. If you place the receiver in the case, you'll probably have to pull it out if there are difficulties.

To test, adjust, and debug, connect the battery to the set (if it's available, use another less expensive $9-\mathrm{v}$ battery-six series-connected penlite or flashlight cells are fine-for first tests), turn the volume on, and tune for a station. If the set is insensitive over the entire broadcast band, interchange the $A$ and $D$
lead connections of L2-L3. Sensitivity should increase as L1 is moved toward the position approaching the "incase" mounting relationship of L1 and L2-L3.

If the set is insensitive at one end of the band only, interchange L2's AB connections or L3's CD connections. Try the possible combinations till you arrive at the best results.

Next mount the set in the case and try it again. Slide L1 back and forth along the edge of the case till you get best sensitivity. It may be possible to reach a point where the set will oscillate (squeal). Simply change the position of L1 till the squealing stops.

The position of C6 relative to L1 influences sensitivity. The sensitivity of the set may also be increased by tilting L2 and L3 slightly from their vertical orientation relative to the circuit board if oscillations did not occur during the previous adjustment of the position of L1. Experiment with tilting to right and left with the set in the case. When optimum position is found, fasten L2L3 in place permanently with cement, and fasten L1 against the side of the case with cellophane tape.

The circuit board assembly is held in the case with two machine screws. Pressure between the circuit board and the case holds the speaker in place. Position the speaker so that maximum cone area is visible through the cabinet speaker openings. Fasten C1 directly to the case with the two small machine screws provided with the capacitor for this purpose. Install the dial provided with the capacitor and fasten the volume control knob. Position the battery so the back of the case


B Back view of entire assemby without (A) and with (B) battery.

# Underwafer Intercom 

## This unusual intercom provides constant contact between boat and diver, amplifying your voice through a loudspeaker

By C. L. HENRY

DESIGNED for rough boat service or dockside operation, the amplifier of this intercom is transistorized for battery economy. Its simple circuitry and reliable operation make it ideal for Scuba divers, or even "hard hat" professionals.
The diver wears a throat mike and earphone (Figs. 1, 3). When he talks, his voice is amplified to speaker volume and can be heard by anyone within earshot on the boat or dock above. Unlike an ordinary telephone set, there is no push button or ringer, and the diver's hands are always free. Also, a special sidetone circuit enables him to hear his voice in the earphone and know that the surface is also hearing him.

At the "upstairs" end (Fig. 2) operation is ultra-simple, with a push-to-talk switch and
loudspeaker volume control as the only live controls. A separate volume control, R12, (Fig. 5B) is equipped with a Millen shaft lock so that the volume fed to the diver's earphone cannot be changed accidentally. Also, an auxiliary audio output jack enables you to connect in a remote speaker. One diver reported that this interphone, which uses less than $\$ 20$ worth of parts, paid for itself quickly in helping to salvage lost articles. It's fine for treasure hunting or coaching Scuba students and since the throat mike would enable it to work well in very noisy locations, it might have many uses on dry land as well.
Power for the microphone circuit is supplied by two D-size flashlight cells mounted inside the case. The $300-\mathrm{ma}$. amplifier requires an outside battery. You can use a lantern size dry cell, which will give you up to 15 hours of continuous operation, equal to many days of diving. Or, using the 6-12 volt selector switch, you can tap any convenient storage battery.
Construction. Begin by marking, drilling and punching all of the holes in the case, the front and back covers, Fig. 4 and in the internal chassis box (Fig. 6). Even though the case itself will be sealed later by rubber gaskets, it is necessary for salt water operation especially, to protect all metal surfaces against accidental wetting.

Coat the inside of the case and the, surfaces of parts that you can't reach later with several layers of acrylic or silicone resin spray, which both insulates and provides corrosion resistance. Completely waterproof the speaker with 4 to 6 heavy coats of the plastic spray.

Wearing a waterproof earphone and throat mike, the diver is always in instant confact with the surface. The phone must be worn loosely to avoid unequalized ear pressure which could rupture the eardrum.

How It Works. In the amplifier, two transistors are used to obtain a full 2-watt output with a carbon mike input. Mike power is supplied by two flashlight cells mounted inside the amplifier case. They will provide months of use. The diver's carbon mike is connected through a transformer, T1, and volume control $R 4$ to the input of the first transistor, TR1, a Sylvania type 2 N 35 . An NPN type, this transistor is operated in a common emitter type of circuit. Resistors R5 and R6 determine the bias or operating point of the transistor, and it requires about 4 ma collector current. The collector or output lead of the 2 N 35 is connected to the trans-


Next mount all the parts as shown in Figs. 5A, 5B, using lock washers or lock nuts. The transistors are located on the cover of a small $4 \times 2 \times 23 / 4-\mathrm{in}$. chassis box (Fig. 6) which in turn is mounted on the inside of the back panel of the amplifier case. Bolt the 2N155 transistor directly to the box, after scraping the box paint off to provide tight contact and effective heat dissipation.

Transformer T1 is mounted inside the chassis box along with the resistors and capacitors in the transistor circuitry. Positioning of parts is not critical, but keep the input and output circuits as far apart as possible, since feedback or whistling may occur if they are close enough to couple. Wire the transistor circuit (Fig. 5C) and then complete the rest of the amplifier, using color coded hookup wire.

Now check your wiring carefully against the schematic. If the transistors are wired incorrectly, they will be ruined instantly when power is applied to the circuit. Complete construction by lacing the wiring carefully, and then coat the entire assembly (switch contacts protected temporarily with tape) with the waterproofing sprays mentioned earlier. Cut strips of rubber and cement them to the case to make a watertight gasket for the front and back panels.
former T2. The winding of T2 is bypassed with C5 to correct the high frequency response of the amplifier. The secondary of T2 connects to the second transistor, TR2, a CBS type 2N155. Output of TR2 feeds to transformer T3 where the collector current

is about 350 ma .
The 2N155 output circuit is unusual: in effect, it is a common emitter-type amplifier, with two feedback windings on T3 canceling each other to allow the 2N155 collector to be connected directly to chassis in order to provide an effective heat sink.

The T3 secondary is connected to the push-to-talk switch, and in normal position, through this switch to the loudspeaker mounted in the case. When the push-to-talk switch is pressed, the output of the amplifier output connects through the remote volume control, R12, to the diver's earphone. Capacitor C8 supplies a sidetone circuit which allows the diver to hear himself talk. When he can't hear himself, it warns him that there is no communication to the surface. If you want more sidetone, increase the size of this capacitor.

Water Proofing Mike and Phone. The amplifier serves either the scuba or skin diver, or the hard-hat suit diving rig. Since the scuba diver must submerge with a tightly-fitting mouthpiece, speech in the ordinary manner would be impossible; hence a surplus throat


Wiring inside the case is not crowded. Be sure to separate the input from the output circuit wiring to prevent audio howl. The speaker must be coated heavily with waterproofing spray.



Transistors are mounted on the top of the small circuit box cover. Make waterproofing gaskets for both front and back covers of $1 / 2$-in. rubber strip.


REAR
VIEW tice makes simple words understandable. Seal the edge of the throat mike with Scotchkote (or equivalent) Electrical Coating.

Select an earphone of low impedance for greatest volume. Remove the diaphragm, spray it and the wiring, and then seal the entire assembly with plastic electrical tape covered with Scotchkote. For extreme depths, you may want to do some experimenting with the alternate
 method if drilling holes in the earphone case, and allowing water to enter and equalize pressure. Underwater, the earphone is almost as clear sounding as on dry land, since the short distance to the ear is not enough to muffle the sound. You can use an earphone clip, or attach both throat mike and earphone to an elastic headboard. Oneimportant caution: When in the water, do not fit the headphone tightly over the ear since pressure variations in descent can rupture your eardrum.
Fig. 9 details the in-


This fype of face mask connects to an air hose. Since the diver has no mouthpiece, the microphone can be installed near the bottom of the plastic faceplate.

stallation of a single button type microphone in the faceplate of the hard-hat diving rig. Waterproof the microphone, and install the earphone, also waterproofed, in the head covering of the suit. Both mike and phones are connected to the 3 -wire cable with a surplus AN waterproof connector. Tape the cable directly to the air hose.

Connect the cable to the skin diver's mike and earphone directly-taping and covering the wire joint with Scotchkote. For extensive Scuba diving and exploration, a wire reel and about 150 -feet of the 3 -wire cable can be arranged for easy operation. Lines to several divers can be connected to the amplifier, simply by wiring in parallel.

If the Scuba diver needs complete freedom of movement, he can shed his phone, mike and cable, and tie it to an underwater marker

[^3]anchored in position. Brightly colored, it will be easy to find for use at any time.

Such a completed underwater intercom will add an immense safety factor for novice divers.


It's fun to build gadgets, but the serious experimenter soon realizes that this is but a preliminary to real elecfronic understanding. To master any branch of science, one must learn to take, graph, and analyze quantitative data. With this convenient transistor characteristics analyzer you do just that.

By C. F. ROCKEY

BLOCK diagram (Fig. 2) and schematic (Fig. 3) show how this transistor analyzer works. A relatively low-voltage dc source provides a "signal" which may be applied in either polarity to either the base or emitter circuit of the transistor under test. Likewise, a variable supply $d c$ source may be connected at will to any electrode. Appropriate cur-rent-measuring instruments are associated with each source, and either positive or negative terminals of either source may be made the common point by grounding switches. All significant points of the circuit are brought out to terminal screws for convenient reading of all important circuit potentials. Thus voltage/current relationships in any parts of a three-terminal semiconductor element may be conveniently adjusted and measured. Two-terminal crystal diodes may also be studied by connecting to the two appropriate terminals.

You can build this device easily in a couple of evenings. Total cost to build will be approximately $\$ 50$ (including batteries and at least one experimenter's transistor for dem-
onstration). You will also need a volt-ohmmilliammeter of the ordinary radio-servicing sort.

Constructing the Unit. Begin by drilling the major chassis holes (see Fig. 4). Any lineartaper, radio-replacement potentiometers of the right value may be used. They need not be equipped with switches. Multi-element function switches were used, even though so few positions were utilized, because these switches cost no more than those with fewer positions, and the manufacturer provides an adjustable stop so that the user may readily select as many positions as he needs; also, the additional switch positions provide for expansion as the transistor art advances. You may use appropriate switches you have on hand, but make sure that they are of the nonshorting type.

After drilling the major holes, drill chassis and mount the Cinch-Jones terminal strips using 6-32 steel machine screws and nuts. Then fasten into place each of the potentiometers and switches.

Solder each connection carefully with rosin-core solder, avoiding short-circuits between lugs or to the chassis. The exact order of the wiring is not critical; just be sure you


This analyzer provides maximum flexibility for quantitarively sfudying the dc and low-frequency interlectrode relationships of transistors.
tery connections. Be sure to observe correct polarity. I recommend a $6-v$ "lantern battery," available at most large hardware stores, for the supply battery. Provide connections to it by soldering wires to the spring terminals usually used. Make sure the battery switch is in off position.

Next, connect the leads of the transistor you wish to examine to the terminals provided. Be sure to first ascertain whether it is a PNP or an NPN unit; incorrect information here will cause confusion in the measurements, and may re-

follow an orderly procedure, and check each step carefully.

Finally, install and connect the meters. Be sure to observe the little plus-sign, and polarize these correctly. When the meters have been installed, and the wiring checked, clean off the top of the chassis with carbon tetrachloride, or other grease solvent and mark the terminals and switch positions with a steel pen, using draftsman's ink. When the markings are complete and dry, give the chassis a coat of clear, water-white spray lacquer.
Using the Transistor Analyzer. Prepare the instrument for use by connecting a single 1.5-v flashlight battery to Signal Battery terminals, a 4.5 - to $6-v$ battery to Supply Bat-

sult in transistor or meter damage.

Perhaps the most significant first determination that can be made is that of the grounded-emitter current transfer characteristic. This property clearly illustrates the control impedance property of the transistor, and thus its ability to amplify. In this measurement we hold the emitter-collector voltage constant, and vary the base current. The corresponding variations in collector current are then observed and tabulated.

Before turning-on the battery switch, set

## MATERIALS LIST-TRANSISTOR ANALYZER

No. Req'd

## Size and Description

aluminum chassis $4 \times 10 \times 17^{\prime \prime}$
0 to 100 microammeter, Triplett Model 327
0 to 3 milliammeter, Triplett Model 327
DPST toggle switch
SPDT toggle switches
10K, wire-wound linear taper potentiometers, Mallory
100K, linear taper potentiometers, Mallory
non-shorting single deck rotary switches, Mallory, Number 1311-1
13 terminal, Cinch-Jones terminal strip
4 terminal, Cinch-Jones terminal strip
2 terminal, Cinch-Jones terminal strip
$270^{\circ}$ dial plates, Croname
8 bar knobs
1 Fahnestock clip
6-32 machine screws, $1 / 2^{\prime \prime}$ long, steel hex nuts, steel for above, plastic insulated hookup wire, rosin core solder
Also needed for measurements, if not already on hand:

```
11.5 v flashlight cell
    6 y lantern battery
    volt-ohm-milliammeter, or vacuum-tube volt-ohmmeter
    experimenter's junction transistor
```

VTVM from the collector to ground. Connection to the collector may be reached directly at the upper terminal of the pair marked Erc, and ground connection may be made to the Fahnestock clip.

Turn on the battery switch and adjust the supply battery potentiometer to $1.5 v$ from collector to ground. This may cause the Isig microammeter to read backwards. If it does, slowly advance the Signal battery potentiometer until it reads at zero. (This "back current" is due to normal interaction within the transistor.) After this change has been made you will probably have to reset the Supply battery pot to the correct voltage. (The input and output circuits of a transistor are interrelated, unlike those of a vacuum-tube at low frequencies which are isolated.)

With the collector voltage at $1.5 v$ and the base current (Isig) at zero, observe and tab-
up the other controls as follows: For an NPN transistor (grounded emitter connection): Base selector switch, + sig; Emitter selector switch, - sup; Collector selector switch, + sup; Signal battery grounding switch, - ground; supply bat grounding switch, -ground.
For a PNP transistor: Base selector switch, - sig; Emitter selector switch, + sup; Collector selector switch, - sup; Sig bat grounding switch, + ground; Sup bat grounding switch, + ground.
In either case, the potentiometers in series with each element of the transistor should be set to zero resistance position. Set both of the battery potentiometers to zero voltage position.

Now, using the $10-v$ (or similarly-scaled) range, connect a radio-serviceman's VOM or

ulate the collector current, which will be read from Isup, the $0-3$ milliammeter. Now, keeping the collector voltage at $1.5 v$. by adjustment of the Supply battery potentiometer, advance the Signal battery potentiometer to


Under-chassis view of completed analyzer. make the base current 5 microamperes. Jockey the two battery pots as necessary to achieve this condition. Again, observe and tabulate the collector current, Isup. Repeat, in 5-microampere (base current) steps until the maximum collector current of 3 milliamperes is reached.

Be sure that the voltage from collector to ground remains at $1.5 v$ at the time each reading is taken.
When all of this data has been taken, plot it

in graphic form. It is customary to plot the independent variable, in this instance the base current, along the horizontal axis (abscissa) and the dependent variable, the collector current, along the vertical (ordinate) axis.

Figure 6 represents a set of curves taken in this manner using a popular brand of experimenter's NPN junction transistor. When completed, such a graph may give rise to a number of significant conclusions. One of these might be that since with an Ec of $4.5 v$ an approximate base current change of 12 microamperes gives rise to a collector current change of one milliampere, or 1000 microamperes, this transistor provides a current amplification of about 80 times. Is there any doubt as to why such a transistor is useful in practical electronics?

Another useful transistor relationship is that between the collector current and the collector voltage, when the base current is kept constant (grounded collector connection). A family of such curves run by the author (using the same NPN unit) is shown in Fig. 7. The identical switch setup, as used for the transfer curves is used for this investigation. Such a family of curves is of first importance to an engineer, who must match a given transistor to a given load resistance, in a practical design problem.

With increasing experience in the use of this analyzer, a student may plan and execute many interesting measurements and experiments. Curves resulting from several such
table a-switch settings for transistor CIRCUIT CONFIGURATIONS:

COMMON EMITTER:
Base Selector Switch
NPN

+ sin
Emitter Selector Switch Collector Selector Switch Signal Battery Grounding

| + sig | - sig |
| :--- | :--- |
| + sup | + sup | sup

+ sup Supply Battery Grounding
-ground
+ ground Isig reads base current, Isup reads collector current. Load resistance provided by Collecfor series potentiometer.

| COMMON BASE: | NPN | PNP |
| :--- | :--- | :--- |
| Base Selector Switch | +sig | -sig |
| Emitter Selector Switch | - sig | +sig |
| Collector Selector Switch | +sup | - sup |
| Signal Battery Grounding | +ground | - ground |
| Supply Battery Grounding | -ground | +ground |

Isig reads emitter current, Isup reads collector current. Load resistance provided by Collector series potentiometer.
COMMON COLLECTOR:
Same as for common emitter, except that the load resistance is providea by the potentiometer in series with the Emitfer.
investigations, as made by the writer, are shown in Figs. 8, 9, and 10. All of the usual transistor circuit configurations can be investigated by merely selecting the appropriate switch settings (see Table A).
Due to the non-uniformity of experiment-er's-type transistors, you should not expect your measurements to agree with the author's. Corresponding curves should be of approximately the same shape, however.


## Phooo Ouiz

Turn a camera loose in a radio-electronic hobbyist's shop and it will come up with some odd-looking pictures. Do you have a good "eye" for solving photo quizzes? Write in the names of the objects in the spaces provided, then check your answers against those on page 122.


## TV-RADIO Servicemen or Beginners.

 7-Volume Job-Training Set on 7-Day FREE TRIAL!

The First Practical TV-RADIO. ELECTRONICS Shop Library!

Like Having An Electronics Expert Right At Your Sidet

 drade of :llustrations:
 RADIOFEM RECEIVERS: 403 pages; fully illustrated. vol. 3 EVERMAMG, on $N$. RADIO Cerculis! 335 parco, diagrams. Hagrams
YOL, 4 , TVERYTHMG ON SERY Cinl NS Rum Nirs! How tey, moth. Stow to use them. S6 pares; iflustrated. trations, diagrams:
VIL, 5, TV CYCLOPADIA, Duict and enicise answers to iy prob ams In athtabetical order. In. cluring UHF, Color Ty and Tantitiors. 868 pages.
vel. I-THARSISTOR CRCIII if FDPOOR Practic3 R terence cotering , rinsistor appletians: our 200 Cineuit Diagrams? 410. prases:
begis have brigit. VinIt cloin, hashablf coyers

## FREE BOOK-FREE TRIAL COUPON!

 paid. Cash price only $\$ 24.95$. Or return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep. Offer limited, so act NOWGEARNED MORE FROM THEM TIAN FROM 5 YEARS WORK!" - Learned more from your first two -olumes than from 5 years work." -Guy Bliss, New York

- Swell set for either the service--nn or the beginner. Every service ench should have one."-Melvin

Masbruch, lowa.

FREE DIAGRAM BOOKI We'tl send you this big book, " 150 Radio-Television Picture Patterns and
Diagrams Explained DREE just for examining Coyne's ${ }_{7}$ FREE just for examining Coyne's 7 -
Volume Shop Library on 7 -Day FREE TRIAL! Shows how to cut servicing lime by reading picture-patterns; plus schematic diagrams for many Tv and radio sets. Yours FREE whether you
keep the 7 volume Set or not! Mail coupon TODAY!
Educationsf Book Fumbinhno Bivifion
ELECTRICAL SCHOOL


## Educational Book Publishing Division COYNE ELECTRICAL SCHOOL

1455 W. Congress Pkwy., Dept. $90-\mathrm{RE}$, Chicago 7, 111 . Yest Send me COYNE'S 7.Volume Applied Practical per your offer. Include "'Patterns \& Diagrams", book FREE:
Name
Address
City
y. ................... Zone Zone ... State
Check here if you want Set sent C.O.D. Coyme pays shipping charges. 7 -Day Money-Back Guarantee.
 control knob in center.

## AC Power Panel

## Simple unit checks power input and furnishes various ac voltages

eral experimental work. By using surplus or imported meters, and adapting the common ac voltmeter to the more scarce ac ammeter, costs can be kept down to a reasonable figure. Excluding the cabinet, and by using $21 / 2$-in. meters, the unit shown can be built with surplus parts for less than $\$ 20$, as compared to nearly $\$ 40$ if built with new parts.

Basically, the unit consists of a variable voltage auto-transformer, an ac voltmeter and ac ammeter. Switches transfer the voltmeter connections, cut the ammeter and auto-transformer in and out of the circuit and (in the unit shown) provide two ammeter ranges. Figure 1 and the schematic (Fig. 2) also show a neon pilot light

Problem: A TV or radio set that goes bad only between 5:30 and 7:00 PM, or on rainy Monday mornings.

Problem: An electric motor that heats up excessively, even though the shaft turns freely.

Problem: Can a small radio output transformer be used as a step-down voltage transformer for a given load?

The solution to all of these problems lies in the metered variable-voltage power unit shown in Fig. 1. By reducing the normal line voltage to the TV set and radio (as happens when electric stoves create a peak load at dinner time, or when electric clothes dryers are being used on rainy Mondays), adjustments can be made to the set to provide proper operation at lower line voltages. By checking the current being drawn by the motor, evidence of shorted windings can be found. And by checking the current into the transformer as the voltage is increased, and comparing with its rating, its suitability for a given job can be determined.

There are many other uses for a highpowered, metered, variable ac power source in servicing work, appliance repair, and gen-

## materials list-power panel

(Applicable to unit shown in Fig. 1)

| Desig. | Description |
| :---: | :---: |
| R1 | 56,000 ohms, $1 / 2$ watt (not required if included in PL) |
| R2 | 27,000 ohms, $1 / 2$ watt (see text) |
| TI | 7.5 amp variable auto-transformer (Superior Electric 116U, |
|  | Standard Electric 500BU or T5lU, Ohmite VT-8, or surplus unit of desired ampere capacity) |
| T2 | "Current Transformer" (see text) |
| S1 | DPST toggle (see text) |
| S2 | DPDT toggle (see text) |
| S3, S4 | SPDT toggle, 3 amp |
| S5 | SPST toggle, 3 amp |
| PL | neon pilot light holder (Dialco 95408X or equivalent) |
| M1 | 0.150 volt a-c meter |
| M2 | low-range a-c voltmeter (see text) |
| S01 | female panei receptacle (Amphenol 61-F1) |
|  | $6 \times 7 \times 12^{\prime \prime}$ cabinet (Bud CU-1124), binding posts (op- |

Some companies handling surplus material where auto-transformers and meters might be secured:
Advance Electronics, 6 West Broadway, New York 7, N. Y.
Barry Electronics Corp., 512 Broadway, New York 12, N. Y.
Columbia Electronics, 2251 W. Washington Blvd., Los Angeles 18, Calif.
G \& G Radio Supply, 51 Vesey Street, New York 7, N. Y.
Hi-Mu Electronics, 133 Hamilton St., New Haven, Conn.
Peak Electronics, 66 W. Broadway, N'ew York 7, N. Y.
Standard Surplus, 1230 Market Street, San Francisco 3, Calif.
TAB, 111-WD Liberty Street, New York 6, N. Y.
Also refer to local Classified Telephone Directories under the headings of:
"Radio Equipment and Supplies"
"Electronic Equipment and Supplies"
"Surplus Materials"
and binding posts paralleling the outlet socket, neither of which is absolutely essential.

The only unusual item is the home-made "current transformer" (T2), the details of which are shown in Figs. 3 and 4. AC ammeters are scarce in surplus stocks, and since any ammeter's scale is non-linear, lower values are hard to read. Both of these problems are overcome by using a simple low voltage ac meter, the "current transformer," and multipliers to provide two or more ranges.
The transformer shown was made by wrapping insulated \#14 wire around an old relay coil. The coil used was from a surplus relay, has a dc resistance of nearly 7000 ohms, and is about 2 in . long and of 1 in. dia. The \#14 wire (top winding of T2 in Fig. 2) is in series with the power line through the unit, and current flowing through these turns of heavy wire induce a voltage in the relay coil, which deflects meter M2. The action is fairly linear, and the meter can readily be calibrated in amperes.

The meter used was a 0-2 volt ac meter. About 8 turns of \#14 wire give a full-scale deflection ( 2 volts) when 3 am peres flow through the circuit. Smaller wire, with more turns, could be used to get greater deflection. For example, 3 amps flowing through the additional turns permitted by using \#18 wire might give induced voltages of over 5 volts, permitting the use of a higher range voltmeter.

To make the transformer, first decide on the current to be required to give a full-scale deflection of the meter on the lowest range (if more than one range is desired). Then make a mounting for the relay coil on the back of the meter, as shown in Figs. 3 and 4. Temporarily connect the relay coil terminals to the voltmeter and solder one end of the heavy wire to the lug at one corner of the mounting plate. Wrap as many turns of heavy wire as


TABLE A-LIGHT BULBS REQUIRED TO GIVE SPECIFIC CURRENTS (at 120 volts) Note: The wattage rating of domestic lamps is usually quite accurate. Due to the combinations used for most readings, any inaccuracies tend to offset each other. However, only new or relatively new lamps should be used for the greatest accuracy.

## FOR CURRENT

(amperes)
WATTS REQUIRED

| (amperes) |  |
| :--- | ---: |
| .125 | 15 |
| .25 | 30 |
| .5 | 60 |
| .75 | 90 |
| 1.0 | 120 |
| 1.25 | 150 |
| 1.5 | 180 |
| 1.75 | 210 |
| 2.0 | 240 |
| 2.25 | 270 |
| 2.5 | 300 |
| 2.75 | 330 |
| 3.0 | 360 |
| 3.25 | 390 |
| 3.5 | 450 |
| 3.75 | 480 |
| 4.0 | 510 |
| 4.25 | 540 |
| 4.5 | 570 |
| 4.75 | 600 |
| 5.0 | 630 |
| 5.25 | 660 |
| 5.5 | 690 |
| 5.75 | 720 |

LAMPS REQUIRED
(connected in parallel)
15
15
$15+15$
60
$60+15+15$
$100+10+10$
100
150
$150+15+15$
$150+60$
$150+60$
$200+15+15$
$200+60+10$
$200+100$
$200+100+15+15$
$200+100+60$
$200+150+25+15$
$200+150+60+10$
$200+150+100$
$200+150+100$
$300+150+15+15$
$300+150+15+$
$300+150+60$
$300+200+25+15$
$300+200+60+10$
$300+200+100$
$300+200+100+25$
$300+200+100+25$
$300+200+100+60$
$300+200+100+60$
$300+200+150+40$
$300+200+150+40$
$300+200+150+60$ (minus 10W)
Lamps required to calibrate to 3 amperes: two 10 watt, two 15 watt, one 60 watt, one
100 watt, one 150 watt, one 200 watt
Additional lamps required to calibrate to 6 amperes: one 25 watt, one 40 watt, one 300 watt.
Four sockets will be maximum required for either calibration.

"Current transformer" and meter, showing at left the type of relay coil and heavy wire used.


- OUTER COIL


CURRENT TRANSFORMER MOUNTING
of the magnetic field around the coil affecting the meter action.
To determine the multiplier used for the higher range ( R 2 ), use a variable resistance or resistance decade. Set the value high ( 50 K or more), and connect the load required to give the desired deflection at fullscale on the higher range. The meter should read less than full-scale, and gradually reducing the resistance to the value required for full-scale deflection will give the multiplier ( R 2 ) value required.

To calibrate the meter, place the metertransformer assembly in the panel (if a metal panel is used), and, using the lamp combinations shown in Table
possible around the relay coil (single layer) and hold the turns in place with a turn or two of plastic electrician's tape. Connect the coil of heavy wire in series with the load desired for full-scale reading (see Table A).

If the meter goes off-scale, reduce the number of turns of heavy wire by unwinding the free end of the coil, a turn at a time. Continue checking the meter reading, and as the exact full-scale point is approached, reduce the turns by half- and quarter-turns, to get the exact winding required to give full-scale deflection when the desired current is flowing. When this point is reached, tape the free end of heavy wire on the relay coil, and solder the end to the lug at the other corner.

If the full number of turns will not give full scale deflection for the desired current, these are several alternatives. One, use a meter of greater sensitivity; two, try winding a second layer of heavy wire; three, increase the current desired for full-scale deflection; and four, use smaller wire. The second layer of wire may reduce induced voltage unless wound carefully, and the use of smaller wire may be undesirable if it has insufficient current capacity for the full load required, particularly if several ranges are to be used.

In making the transformer mounting, make the plastic rod spacer as long as possible (within the limits of the cabinet chosen) to keep the relay coil away from the meter. This is particularly important if the meter is in a non-metallic case, as it reduces the possibility

A, note the meter readings on the existing scale at different current values, for both ranges (if more than one is used). In the unit shown, intermediate markings were not made up to 3 amps on the $6-\mathrm{amp}$ scale, since those values would be read on the lower range.

There are definite reasons for the voltmeter switch (S3), the voltage control switch (S2), and the ammeter switch (S5). The voltmeter switch permits the voltmeter to be switched to read either direct line voltage or controlled voltage. The voltage control switch allows the control to be switched out of the circuit to permit measurement of current at direct line voltage, without "artificial" adjustment. The ammeter switch permits the ammeter to be switched out of the circuit when using devices that have a high starting current in excess of meter capacity, but a lower running current.

No dimensions are given, as they will vary with individual needs and the exact surplus parts secured. For most use, a 3 -amp autotransformer will do, as it will handle up to 360 watts, although a larger unit might be needed if much work is done with fractional horsepower motors.

Two-in. meters will do, although three-in. meter faces give longer scale length and only cost a dollar more at most surplus houses. Switches S1 and S2 must have a current capacity equal to the maximum to be handled by the unit; the others can be standard 3 -amp switches.

# One-Tube Tin Can Receiver 

Here is an inexpensive one-tube broadcast band receiver that will give four-tube performance. Stations nearly 70 miles away come in with good loudspeaker volume

By JOE A. ROLF, K5JOK

> A one-lb. tobacco can contains the receiver and its $4^{\prime \prime}$ PM speaker. Tuning and volume controls are on top of the lid, speaker is mounted in the bottom of the can. Power cord and antenna lead also enter the cabinet from the bottom.

1

IF you're a pipe smoker, you no doubt already have a cabinet for this receiver. If not, you probably have a friend who buys his tobacco in a one-lb. can. An empty cigar tin or a two-lb. coffee tin can also be used or, if desired, the unit can be easily built on a small standard chassis.

A Prince Albert tobacco can, 5 in . high and 5 in. dia., was used as cabinet by the author. Some tobaccos are packaged in slightly smaller containers and using one of these may make it necessary to alter the parts layout slightly from that shown in Figs. 3 and 4. However, with care there will be no difficulty in getting the components to fit easily in any one-lb. tin you use.

If you're an old-timer in radio, you'll probably recognize the circuit shown in Fig. 2. Similar to those popular in the days when multi-tubers were large and cumbersome and vacuum tubes expensive, it's a reflex circuit designed for economy and compactness and making a single tube do the work of twoboth RF and AF amplifier. Here's how the reflex circuit shown in Fig. 2 works:

The $117 \mathrm{~N} 7 / \mathrm{GT}$ contains a rectifier and power pentode section in the same envelope. The rectifier is employed as a half-wave pow-
er supply, the pentode works as a combination RF-AF amplifier. A crystal diode (CR) is used for an RF detector.

Radio signals enter the receiver from the antenna through C1 and the desired station is selected by the tuned circuit formed by C2 and L1. The selected signal is then amplified by the tube which is biased for RF amplification by the cathode resistor R1. The amplified signal appears across L3 in the plate lead of the tube and, since L3 and L2 form an RF transformer, RF is transferred to L2; RF does not flow through the primary of the output transformer T1, but is passed to ground by C6 which offers very little impedance to RF.

The amplitude of the signal appearing across L2 is controlled by R4 (the volume control). This voltage is rectified by diode CR, and an AF voltage appears across the detector load, R2 and R3. Any RF still present at this point is passed to ground by C4 and C5 which have low impedance to radio frequencies, but high to audio frequencies.

The grid of the tube is connected between


R2 and R3 where the AF voltage is negative with respect to ground. This negative audio voltage, acting through L1 (low AF impedance) biases the tube automatically and causes it to act as an AF amplifier. The AF signal in the tube's plate lead is not affected by L3, nor is it transferred to L2. Nor is it grounded by C6. Instead, it appears across the primary of the audio transformer T1 to operate the speaker connected to the secondary winding.

Construction. The receiver is built with the speaker and output transformer mounted in the bottom of the can and other components mounted on an L-shaped chassis which is fastened to the lid of the can by the volume control shaft and two machine screws. The chassis may either be of aluminum or sheet metal. Sheet metal will be somewhat harder to work, but will allow the builder to solder ground connections directly to the chassis without using solder lugs.

Form the chassis from a piece of material $31 / 4 \times 5 \mathrm{in}$. bent to a right angle with sides measuring $2 \times 31 / 4 \mathrm{in}$. and $3 \times$ $31 / 4 \mathrm{in}$. The $2-\mathrm{in}$. side fastens to the lid with the other leg of the angle centered about $3 / 4 \mathrm{in}$. from one edge of the lid. The $2 \times 31 / 4-\mathrm{in}$. covers most of the lid to reinforce the thin material to which it is attached. The $3-\mathrm{in}$. leg is used for mounting the components.

Tuning capacitor, C2 and volume control R4 are placed so that their shafts are centered in the lid. The tube socket is placed behind C 2 as close as possible. Transformer L2-L3 is mounted horizontally next to the tube as shown in Fig. 3, while L1 is mounted in a vertical position between the tuning capacitor and volume control. A two-lug terminal strip on the top of the chassis, at the right rear edge, is used to connect the output transformer leads to the chassis. Capacitors C6 and C7 are also mounted on this strip.

Filter capacitor C 8 is placed on the right underside of the chassis and next to it, toward the front, is a two-lug terminal strip for mounting R2, R3, and C5. The layout of the remaining components is not critical, but care should be taken that the lid will fit properly with everything mounted and that the grid and plate leads are separated as much as possible to avoid the possibility of feedback. It is particularly important that L1 and L2 be mounted at right angles to one another and separated as much as possible in order to minimize coupling.

The RF transformer L2-L3 is made by winding 75 turns of litz wire (obtainable from a discarded RF or IF coil) over the windings of a ferrite antenna coil. The added


Chassis for the receiver is an L-shaped bracket which fastens to the tobacco can lid. This photo shows the layout of parts on the topside of the chassis. Leads from the output transformer are soldered to the terminal strip at the rear edge.


Underside of chassis. Holes for bringing leads from the top of the chassis should be placed so that plate and grid leads are short and separated from one another.
winding should be secured with several coats of coil dope or finger-nail polish. The original winding is L2; the added winding, L3.

A 12-in. piece of hookup wire brought out of the cabinet with the power cord serves as an antenna lead-in to the chassis. A pin-jack from a discarded tube socket can be soldered to this wire and shielded with tape or plastic tubing to make a handy antenna jack.
Mount the speaker in the bottom of the can with four machine screws. Output transformer T1 can be mounted with screws or soldered in place. If the recommended speaker is not used, its replacement should not extend above the bottom of the can more than $13 / 4 \mathrm{in}$., otherwise the chassis may have to be made smaller.

Small holes in the bottom of the can serve as a speaker grille. Or, for better tone, cut a $4-\mathrm{in}$. dia. hole in the bottom with a sharp

knife. But watch the sharp edges! When the mounting holes for speaker and output transformer have been drilled plus a hole at one edge for the power cord, glue a piece of perforated cardboard over the bottom of the can to protect the speaker cone.

Then make three hairpin legs of \#8 silvered copper wire formed into $V$ shapes $11 / 4$ in. high and soldered in place. For gold legs, use untinned copper wire that has been polished and given a coat of clear finger-nail polish to retard tarnishing.

With completion of chassis wiring and speaker mounting, bring the power cord and antenna lead through the hole in the bottom of the can and attach a power plug. Next, solder the output transformer primary leads to the lugs of the terminal strip at the rear of the chassis. These leads should be long enough to permit the chassis to be removed from the cabinet with the speaker in place.
To test the unit, use a long antenna. (The set should never be grounded or operated on a metal surface.) With an antenna connected, turn the set on and advance the volume control to maximum. Check and see if the filaments are lit before tuning across the band. If working properly, the receiver will receive stations clearly-or with a whistle. In either case, find a strong station at the high end of the band and adjust L2's slug for best reception. At some point of adjustment the audio will become distorted. Set the slug just below this point.
Because of the metal cabinet and the absence of a loop antenna, a short external antenna is necessary. For local stations, 4 ft . of hook-up wire is sufficient. For distant stations, a longer length strung around the room will do. When the set is working properly,
connect a short antenna and adjust L1 so that C2 tunes the entire broadcast band and then adjust the slug on L2 again for best reception. The receiver is now ready to be placed in its cabinet.

A small amount of regeneration requires the initial adjustment of L2 to avoid distortion or oscillation at the upper edge of the band. This also tends to make the receiver more sensitive on the high end of the band, but volume for all stations is nearly the same due to the AVC action of the audio bias. While not as selective, the receiver has better tone than most small table-models, despite the small speaker and tin cabinet. If poor selectivity is noticed when the set is operated near local, high-power stations, reduce the value of C 1 by about half.
Note: To avoid the possibility of shock, either: 1) always plug the power cord into the 110 -v outlet with the cabinet common to the ground side of the power line (this will also give best reception); or 2) completely isolate the line from the cabinet and chassis by making all ground connections to a terminal lug insulated from the chassis. Capacitor C4, however, should be grounded to the chassis to provide an RF return to the tuning capacitor frame.

## Coil-Winding Tip

- Amateur radio operators who wind their own short wave coils know how difficult it sometimes is to properly space and anchor just a few turns of wire. The solution is to saw or file two opposite
 slots $1 / 8 \mathrm{in}$. wide and about $1 / 16 \mathrm{in}$. deep on the top edge of the coil form. Place a wide, flat No. 32 rubber band in these slots and stretch it over the form and between two pairs of prongs. Fountain pen or ball pen marks are easily made on the rubber band, exactly where each turn of wire should pass. Draw the wire tightly to embed it in the insulating rubber and hold it neatly in place without the use of cement.


## Invert Aerial to Speed Installation

- The neighbors may think you're crazy if you start the installation of a TV or radio aerial upside down, but doing this will help you to quickly and easily align a bracket on the edge of your house. By having the mast parallel a corner of the building, one of the windows, or some other vertical part, it is easy to sight the alignment while adjusting the mounting bracket. Then you need only reverse the mast to finish the job.

(A) Standing close to the sphere stands your hair on end and charges to tingle your scalp. (B) Blue flashes will jump to your fingers held 12 in . or more away. (C) Corona point discharge from the tips of a wire rotor spins it like a pin wheel. (D) When end of a fluorescent tube is held closely to sphere, small streamers of blue discharges burn from the lamp terminals and lamp lights. (E) Cloth strip shows electrostatic laws of attraction and repulsion. Tossing a strip of cotton cloth at sphere causes it to remain horizontal. When end touches sphere, it becomes charged to its polarity and is violently repelled.


## Experimental Van de Graaff Generator

## Develop up to 380,000 volts on the same principle as scuffing across a heavy rug

By HAROLD P. STRAND

$y$OU can build a simplified version of the electrostatic generator developed in 1931 by Dr. Robert $J$. Van de Graaff that aided in the development of the atomic bomb. The full-size generators produce several million volts on an aluminum sphere at the top of an insulated column.

The small counterpart of these Van de Graaff generators will perform a variety of experiments (Fig. 1) and develop up to 380,000 volts under ideal atmospheric conditions. Dampness in the air reduces the efficiency of the unit causing leaks of the static charges from the belt, the column and the sphere to the air. When this unit was tested at the high-voltage laboratory of a large university in dry air, the short-circuit current was 18 microamps at the calculated voltage.
The high voltages generated are not usually dangerous, although you can feel a good sting if sparks jump to your fingertips when held too close to the ball. There is no electrical power
supplied to the belt; it picks up charges as the velvet rubs over plastic. Static charges on the surface of the plastic are positive and attract negative charges from the ground through a brush near the bottom end of the belt. These negative charges are carried upward on the moving belt, picked off by one of the two brushes in the top and carried to the surface of the sphere through the corona gap. The other brush is called the charging brush because it insures a positive polarity of the belt on the way down (Fig. 3). After a few minutes of operation, voltage builds up on the sphere to the maximum possible with the insulation provided and atmospheric conditions present. The model stands $391 / 2 \mathrm{in}$. high and only weighs 18 pounds. The only requirement for operating it is a 115 -volt $a-c$ or $d-c$ outlet for the motor.
An inexpensive motor for driving the belt can be salvaged from an old Hoover vacuum cleaner. A slide-wire resistor or rheostat controls the speed to around $3000-4000 \mathrm{rpm}$. These motors are usually available at repair shops for $\$ 5$ or $\$ 6$ and develop about $1 / 4 h p$. Be sure to select one with tight bearings that runs fast, smooth and without excessive sparking. It's a good idea to disassemble the motor, clean out dirt and old oil first. While the armature is out, turn the threaded end of the shaft to a $1 / 4-\mathrm{in}$. diameter (Fig. 5). To reverse the direction of rotation to drive the vel-

Table-top Van de Graaff throws heavy, noisy discharge to hand electrode up to 5 in. or thinner discharges up to 8 or 10 in . This model simulates the full-size generators that helped in atomic research.




vet belt counter clock-wise, reverse the brush leads by soldering on extensions. When you test the reassembled motor on the line with the resistance in series, loosen the two screws securing


Adjusting compression of rubber mounts helps to clign lower pulley to keep belt tracking. Sides can be fitted with masonite panels if desired.
brush yoke and move to the position that generates maximum torque on the shaft; you can determine this point by holding the shaft in your hand lightly to feel maximum turning force.


Below, noisy discharge sparks jump from top of sphere to hand electrode suspended without its handle from ceiling with ground wire. Air space is 5 to 6 in. Interval between sparks depends on atmospheric conditions and speed of belt. Below ieft, pulley, charging brush, collector brush and spark strips at top end of column. Pulley supports are made of Bakelite for strengthened insulation.



A plywood cabinet encloses the motor and the base of the plastic column (Fig. 4). The motor mounts on two angle brackets bent up from $3 / 16 \times$ $3 / 4$-in. mild steel or aluminum. Make a base for the motor from $1 / 2-\mathrm{in}$. birch plywood and mount it on large rubber knobs at the four corners to reduce vibration and to allow the belt to be tightened by compressing the rubber. Adjust compression on rubber mounts to align pulley.
A turned hardwood ring with its inside diameter of about $47 / 16 \mathrm{in}$. should be a tight fit around the Lucite column. Shellac or varnish makes an effective cement to hold the column in the ring. A flat copper wire (salvaged from the field winding of an old automobile starter) around the column keeps lower end of unit at ground potential.
The lower belt pulley mounts directly on the end of the motor shaft (Fig. 5). Turn a slight crown on the solid Lucite pulley to help keep the belt centered. Turn the center rod parts from brass stock and assemble pulley to the end of the motor shaft with set screw. Turning and center hole boring must be done accurately.
A bent-up piece of .064 aluminum supports the ground inductor brush (Fig. 6). Two pieces of copper screening, $1 / 32$-in. mesh, give numerous arcing points and are adjusted with screws to about $1 / 8$ in. from the moving belt after it is in place.

A piece of Lucite sheet must be fitted inside the cabinet so the back of the belt rubs it (Fig. 7). Fit the Bakelite supports after the belt is in place.

When you complete the base cabinet, mount the driving motor, lower brush pickup and pulley, you're ready to add the top pulley assembly, make the belt and top sphere.

The top pulley and brush collector assembly inside the aluminum sphere mounts on two chunks of paperbase Bakelite screwed and Pliobond cemented to the inside of the Lucite column (Fig. 10). These blocks are curved to fit the column and must be mounted directly opposite each other and centered. The vertical Usupports that hold the top pulley must be bored for a press fit with the
bearings. Use a $3 / 4-\mathrm{in}$. end cutting bit or end mill $.0003-.0006$ in. undersize in a drill press to bore out for the bearings. Or you may use a single lip type wood boring bit without a threaded center worm in a drill press if well sharpened.

Bore a $1 / 4-\mathrm{in}$. center hole about .0003 in . undersize in the piece of $2-\mathrm{in}$. dia. Lucite to be used for the top pulley for a press fit with the $1 / 4-\mathrm{in}$.

shaft, or you can drill a full-size $1 / 4-\mathrm{in}$. hole and turn a slightly oversize steel shaft for a press fit in the hole (Fig. 11). Cut bearing seats on the ends of the shaft for a light press fit in the bearings. Use the lathe cut-off tool to indicate length of the shaft, remove from lathe and remove the excess length; file ends smooth. Now, cut a piece of aluminum foil long enough to wrap around the pulley and lap $1 / 16$ in. Pliobond to pulley.

To assemble the upper pulley unit, press the bearings on the ends of the pulley shaft, then press the Bakelite side supports over the outer race of the bearings. The U -supports and the cross piece must be centered so the pulley is di-

rectly over and in alignment with the bottom pulley. A plumb bob or weight on a string helps to align the pulleys vertically, but be sure the bottom assembly is resting level. After locating the U-supports, screw them to the Bakelite cross piece and screw the cross piece to the blocks at the top of the column. The top pulley assembly will be removed later to slip on the belt.

## MATERIALS LIST-VAN de GRAAFF GENERATOR

1 tubing $26^{\prime \prime}$ long $\times 41 / 2^{\prime \prime}$ dia. $\times 1 / 8^{\prime \prime}$ wall. May come about $47 / 16^{\prime \prime}$ diameter actual measurement, column
2 solid rod stock $3^{\prime \prime}$ Iong $\times 2^{\prime \prime}$ dia., pulleys

## Natural paper base Bakelite

$11 / 2 \times 3 / 4 \times 37 / 8^{\prime \prime}$ (Friction piece support in base)
$11 / 4 \times 5 / 8 \times 21 / 2 \prime \prime \prime \prime \prime$ (Friction piece support in base)
$11 / 8 \times 5 / 8 \times 21 / 2^{\prime \prime}$ (Friction piece support in base)
Forest Products Company Inc., 131 Portland St., Cambridge, Mass. will supply the above material postage paid to any part of the U.S.
$11 / 16 \times 2 \times 61 / 2^{\prime \prime}$ alum. brush bracket (base)
$1.032 \times 13 / 8 \times 23 / 4$ " alum. alloy (top of bracket)
$23 / 16 \times 3 / 4 \times 51 / 2^{\prime \prime}$ mild steel motor angle brackets
1 9/16" dia. x $17 / 16^{\prime \prime}$ brass lower pulley
$15 / 8^{\prime \prime}$ dia. $\times 13 / 4^{\prime \prime}$ brass lower pulley
$11 / 2^{\prime \prime} 83 / 8 \times 145 / 8^{\prime \prime}$ birch plywood, cabinet
$271 / 8 \times 83 / 8^{\prime \prime}$ birch plywood, cabinet
1 fir plywood $3 / 4 \times 81 / 2 \times 143 / 4$ " base
$8 \mathrm{ft} 3 / 8 \times 3 / 8$ " hardwood strip stock

## Miscelfaneous

4 rubber knobs or feet
4 rubber knohs about $3 / 4$ to $l^{\prime \prime}$ diameter for motor base
1 universal motor from an old Hoover vacuum cleaner
$13 \times 4^{\prime \prime}$ copper screening, preferably $1 / 32^{\prime \prime}$ mesh
1 flat copper wire from the field coil of an old auto starter, about $24^{\prime \prime}$ long, ground band around column

| No. | S. Size and Material | Use |
| :---: | :---: | :---: |
| 1 | $1 / 8 \times 1 / 2 \times 41 / 4^{\prime \prime}$ sheet Lucite | top brush strip |
| 1 | $1 / 8 \times 3 / 4 \times 31 / 4$ " sheet Lucite | brush base in top |
| 1 | $1 / 4 \times 13 / 16 \times 41 / 2^{\prime \prime}$ paper base Bakelite | top support |
| 2 | $1 / 4 \times 7 / 6 \times 23 / 4$ " paper base Bakelite | side support |
| 2 | $1 / 4 \times 3 / 4 \times 7 / 8^{\prime \prime}$ paper base Bakelite | blocks, top edge of column |
| 2 | $1 / 4 \times 13 / 16 \times 31 / 4$ " linen base Bakelite | 年ey supports |
| (Forest Products Company Inc., 131 Portland St., Cambridge, Mass. will supply the above material postpaid to any part of the U.S.) |  |  |
| 1 | $1 / 4$ dia $\times 41 / 2^{\prime \prime}$ cold rolled ste | top pulley shaft side collector brush base |
| 1 | . $030 \times 1 \times 31 / 4^{\prime \prime}$ sheet aluminum |  |
| 1 | $.030 \times 1 / 2 \times 3^{\prime \prime}$ sheet aluminum | corona gap strip |
| 2 | $6^{\prime \prime}$ dia mixing howls aluminum | hand electrode |
| 1. | . $050 \times 13 / 4 \times 41 / 4^{\prime \prime}$ sheet aluminum | handle support, hand electrode |
|  | $10^{\prime \prime}$ dia sphere, 050 alum. (available from Robert Towne, 49 Abbott Ave., Everett Mass., $\$ 8.25$ ppd. in U.S.) |  |
| 1 | . $018 \times 3 / 8 \times 3^{\prime \prime}$ hard brass sheet | connecting strip jumper to putley |
| 1 | . 003 or. $004 \times 3 / 8 \times 4^{\prime \prime}$ shim stock |  |
| 1 | slide wire resistor or a rheostat $95-100$ ohms, 1.5 to 2 amps |  |
| 1 | S.P.S.T. toggle switch | belt |
| 1 | 23/4" wide $\times 6$ ' long velvet ribbon |  |
| 2 | New Departure ball bearings \#7035 (Availahle from Bearings Specialty Com= pany. 665 Beacon Street, Boston. Mass.) |  |
| 1 | $3 / 16$ dia $\times 13^{\prime \prime}$ long steel or brass rod | handle for hand electrode handle for hand electrode |
| 1 | 3/16 I.D. x $1 / 20 . D . \times 12^{\prime \prime}$ long rubber tubing misc. wire, stain, shellac, serews, nuts, etc. heavy duty aluminum foil, pliobond cement |  |

Velvet ribbon for the belt may usually be obtained from a large department store. You'll need about 6 ft . of $23 / 4-\mathrm{in}$. ribbon of any color. To determine the exact length, run a string over both pulleys and allow about $3 / 4 \mathrm{in}$. for lapping at the joint (Fig. 10). Apply a generous coating cf Pliobond cement to both surfaces to be joined and clamp between two pieces of wood in Cclamps. Be careful not to allow cement outside of the lap area, or it will be difficult to separate from the wood later. Let the lap set overnight.

To install the belt, remove the top pulley as-

sembly at the two \#6-32 screws and slip the unit through the loop of the belt. Tightening the base nuts maintains the reasonably tight tension required. When the belt is running straight and true, adjust the plastic piece in the base and fit the ground brush in place.

In case you have difficulty keeping the belt running true, there are several ways to correct misalignment. Thin shims of cardboard under either base end of the top pulley support or tightening front or rear motor bolts allow considerable adjustment. For further adjustment, the holes in the cabinet base can be slotted to permit shifting the motor as required.

The aluminum sphere is a metal spinning made according to Fig. 10. You should be able to have a local metal-spinning shop do the job for you, if not, you can get a sphere by mail from the source indicated in the Materials List. When spinning the turned-in neck that should fit tightly over the top end of the column, avoid any sharp corners or the built-up energy from the sphere will leak away. The seam between the two halves of the sphere should form a smooth joint to eliminate any edges where energy can leak off.


Machining shaft to be a light press fit in New Doparture ball bearings 7035 .


A strip of . 003 -in. brass shim stock is pressed in with bearing at left side (facing collector brush). After starting the bearings in their holes, on arbor press can be used to seat them. Note other top end parts.

When the bottom half of the sphere is adjusted, fit the brush collectors and the spark gap strip at the top (Fig. 10). The wiring diagram (Fig. 12) shows the necessary connections with the slidewire resistor or rheostat in the circuit to control the motor's speed.

When all parts are assembled and you're ready to make the initial test, run the motor up to about 3000 rpm with the top half of the sphere off. After a few minutes, you should be able to draw short sparks to your finger at the belt in the region between the brushes if the generator is working right. Possible causes for non operation may be that the plastic sheet in the base is not in full contact with the belt or too much humidity.

A final test is to set the half-sphere on top and connect a $d$-c microammeter between the sphere's surface and the ground terminal. A small chunk of modeling clay will plaster the top lead to the sphere's surface. Start the motor and, after a few moment's operation, you should read 15-20 microamperes, the short-circuit current of the unit.

To test the voltage output of the generator, connect a string of eleven 5000 -megohm special highvoltage resistors (Type BBV, available from Resistance Products Co., Harrisburg, Pa.) by screwing their ends together (Fig. 16). Connect the series resistor string to one terminal of a 0-10 d-c microammeter away from the generator, using modeling clay to hold it in constant contact with meter terminal. Attach other end of the resistor string to the sphere with clay. Enclose the resistors in a tube of plastic or other insulation. The other terminal of the meter is connected to the ground terminal of the generator. You might be able to test your generator in a nearby university or electrical testing laboratory which would probably have the special resistors and microammeter.

When you complete the voltage test set up, run the motor at about 3000 rpm for a few minutes to allow voltage to build up on the sphere. Depending upon the humidity conditions in your test room, you should be able to read from 6 to 8 microamperes. If the meter's needle fluctuates wildly, it probably indicates the plastic piece is


Set up of resistors and microammeter for checking voltage of generator. It will vary with humidity.
not making full contact with the back of the belt. Good contact between the sphere's surface and the resistor string and at the meter is also important for correct readings.

When you read the current on the meter, calculate the voltage using Ohm's law ( $\mathrm{E}=\mathrm{I} \times \mathrm{R}$, where E represents voltage, I the current in amperes and R the resistance in ohms). One microampere is one millionth of an ampere, so 7 microamperes becomes .000007 amperes. One megohm equals $1,000,000$ ohms and 55,000 megohms converts to $55,000,000,000$ ohms. Completing the calculation shows the voltage at a current reading of 7 microamperes is 385,000 volts.

The hand electrode (Fig. 13) capacitor aids in experimenting with the Van de Graaff generator. It should be possible to get satisfactory discharges at speeds as low as 1000 rpm .

## Foil Aids Set Alignment

- To avoid interference, it is common practice to stop a superhet's oscillator before aligning the intermediate-frequency amplifiers. A simple way to do this, is to wedge a piece of aluminum foil between the plates of the oscillator's tuning capacitor. When the dial is rotated, the foil between the rotor plates makes contact with the stator plates and "kills" the oscillator.


## The Radioman's Third Hand

- A wood clip-type clothespin fastened to tabletop by a suction cup makes a handy holder for soldering of eyelets, terminals and lugs.



## Build An Emitter Follower!

> You can couple low-impedance devices to high-impedance circuits with this emitter follower. The unit can be built in a few hours for about $\$ 3$

By FORREST H. FRANTZ, Sr.



An emitter follower can be used to connect the audio of a radio or TV set to a hi-fi amplifier. If back of set is metal, insulate back of emitter follower.

ELECTRONIC experimenters and hi-fi enthusiasts frequently need to connect a low-impedance load to a high-impedance output. Typical applications are coupling a low-impedance microphone or phono pickup, or using a low-impedance meter to measure voltages in a high-impedance circuit. An emitter follower will do the job.

Sometimes the problem of coupling high impedance devices separated by considerable distance crops up because the capacitance between the connecting wire center lead and shield is sufficiently large to affect the frequency response of the system. If an emitter follower is connected in the line, the problem can be licked.

The emitter follower described in this article is relatively small in spite of the fact that no special effort was made to miniaturize it. Flashlight batteries were employed as a power source to obtain operating economy. The current drain on these batteries is less than 1 milliampere.

The emitter follower is the transistor equivalent of the vacuum-tube cathode follower. The voltage gain of a cathode follower is approximately unity. A simplified vacuum tube cathode follower circuit is shown in Fig. 2A. The input impedance of a cathode follower is high (several megohms), but the output impedance is low (several hundred ohms). Thus, if a low-impedance device such as the ac voltmeter section of a multimeter is to be used to measure ac voltage in a high-impedance circuit, it can be connected to the output terminals and the


3
SCHEMATIC


Front (A) and back (B) views of follower's parts placement and wiring.
input terminals of the cathode follower become high-impedance input terminals for the meter. Probe leads connected to these input terminals can be connected across high-impedance circuits without loading them significantly.

If, on the other hand, the low-impedance $a c$ voltmeter section of the multimeter were placed across a high-impedance circuit, the circuit would be-for all practical purposes -shorted, and the voltage indicated on the meter would be very low. In addition to causing a low meter reading, the near-short circuit would affect the operation of the circuit under test. An example will illustrate this more clearly:

Assume that the voltage across terminals $A$ and $B$ in Fig. 2B is to be measured. If a meter with 5 K impedance ( 1000 ohms per volt set to the 5 -volt scale) is connected across terminals $A$ and $B$, it will measure $5 /(100+5)$ or $1 / 21$ of the 10 volts. However, if, the meter is connected to the output terminals of the cathode follower, and the input terminals of the cathode follower are connected across terminals $A$ and $B$, the meter will read nearly 10 volts. Assuming the input impedance of the cathode follower to be 10 megohms, the voltage across the cathode follower input is $10 \times 10 / 10.1$, which is nearly 10.

The cathode follower unfortunately has the drawbacks associated with a vacuum-tube circuit: high voltage supply requirements, wasted power and large size.

An emitter follower is free of these drawbacks, but there are some differences between it and the cathode follower. The circuit of a simplified emitter follower is shown in Fig. 2C. The input impedance of this emitter follower would be approximately equal to beta times R3, if R2 were not present. The


| Desig. | MATERIALS LIST-EMITTER FOLLOWER Description |
| :---: | :---: |
| , | $2.2 \mathrm{~K}, 1 / 2$ watt carbon resistor |
| R2 | 220K, $1 / 2$ watt carbon resistor |
| R1 | 470K, $1 / 2$ watt carbon resistor |
| C1 | . $5 \mathrm{mfd}, 200$ r paper capacitor (Sprague 2EP.P50) |
| C2 | $30 \mathrm{mfd}, 15 \mathrm{v}$ miniature electrolytic capacitor (Sprague 1158 Litttl Lytic) |
| B | two 1.5-v flashlight cells (RCA VSO35 or Burgess No. two cell battery holder (Lafayette MS-174) |
|  | $27 / 16 \times 33 / 8^{\prime \prime}$ miniature perforated board (Lafayette MS-304) minigator clip (Mueller 30) |
| T | 2N362 Raytheon transistor (or any PN |

Components may be obtained from Lafayette Radio, 165-09 Liberty Ave., Jamaica 33, New York.
beta of the transistor is the current gain, and for the better audio driver transistors, beta is around 100 . Then, if $R 3$ is $1 K$, the input impedance of the emitter follower would be about 100 K if R2 could be neglected. But R2 acts in shunt with the input signal, and therefore if R 2 is about 200 K (this is a practical approximation), the input impedance would be about 67 K .

It might seem that the input impedance could be increased considerably by increasing R3. Suppose R3 were 10K. Then, if R2 could be neglected, the input impedance would be 1 megohm! Now, assuming that R2 can be 1 megohm, the input impedance becomes $1 / 2$ megohm or 500 K . Unfortunately, the size of the battery must be increased (greater voltage required) to use such values. Furthermore, the previous 1 K output impedance has been increased to about 10 K . This is a relatively high impedance in itself.

The Circuit that was chosen for the practical emitter follower described in this article is shown in Fig. 3. This circuit contains the compromises between voltage and circuit values that produce a high ratio of input to output impedance and relatively good frequency response. Resistor R3 was chosen as

$2.2 \mathrm{~K} ; \mathrm{R} 2$ was chosen as 220 K . A series resistance R1 was added to increase the input impedance. In the original model, this resistor was 470 K . The input impedance of the amplifier without this resistance was about 100 K with a gain of unity. With R1 in the circuit and equal to 470 K , the voltage gain was about $1 / 6$, and the input impedance was about 570 K . If R1 is 100 K , the input impedance is about 200 K , and voltage gain is about $1 / 2$.

If a lower beta transistor such as a Raytheon CK722 or a GE2N107 is substituted for the higher beta 2 N 362 used in the original model, the input impedance of the emitter follower without R1 in the circuit will dedrease to about 40K. Now if R1 is made equal to 40 K , the input impedance of the unit will be 80 K and the voltage gain will be $1 / 2$. If R1 is 200 K , the input impedance will be 240 K and the voltage gain will be $1 / 5$. It is easy to see that any PNP transistor that you might have will work in this circuit, but some performance is lost with lower beta transistors.

The front and back views of the emitter follower are shown in Fig. 4. The emitter follower is constructed on a perforated Bakelite board. The on-off switch is a Minigator clip which is connected to the unconnected battery holder lug to turn the emitter follower on. Two flashlight cells connected in series furnish the 3 volts required to power the emitter follower. The input capacitor C1 is 200-v paper capacitor which permits connecting the emitter follower to vacuum-tube circuits. The output capacitor C 2 is a 30 mfd . electrolytic capacitor rated at $15 v$. If you intend to couple into a circuit that has high voltage present, a higher voltage rating is required for this capacitor, but most circuits that you'll couple to won't have high voltage present.

To construct the emitter follower, drill the two battery mounting holes and the third mounting hole. This third hole has been provided to allow the emitter follower to be
bolted down on other electronic equipment for permanent or semi-permanent installation.

Next, mount the battery holder. Then place all of the parts on the board as shown in Fig. 4 by inserting the pigtails through appropriate holes in the board. Then turn the board over and use Figs. 3 and 4 to guide you in wiring. Most of the connections are made with the pigtails of the component parts. The pigtails are bent against the board, and wherever a connection is to be made, the wires are run against each other and soldered.

Input and output terminals consist simply of pigtail or wire ends to which Minigator clip leads may be connected on the original model. If you wish, you may provide wire leads with clips on the ends, or you may provide terminals on the model. The input leads should be shielded. Output leads must not be shielded unless a long length of connecting wire is involved.

The emitter follower will permit two highimpedance devices that are separated by a great distance to be connected together without high frequency attenuation. You might, for example, wish to use an inexpensive table radio as a tuner with a hi-fi amplifier since the tone quality of most inexpensive radios is quite poor. If you disconnect the radio audio amplifier from the center lug of the volume control and run a shielded lead to the amplifier as shown in Fig. 5A, you've converted the radio into a tuner for your hi-fi amplifier.

But, if the shielded lead is over, say, a foot or two long, it will attenuate the high frequencies due to the inherent capacitance of the shielded lead required to minimize ac hum voltage pick-up. If the capacitance of the shielded lead was in parallel with a low impedance such as that of the emitter follower output, the frequency response would remain relatively flat. Such an arrangement is shown in Fig. 5B.

## Magic Light Bulle

THIS 60 watt Mazda bulb, removed from a light socket, glows when held in the fingertips or mouth, and when placed on a suspended pane of glass. Of course, it takes a little doctoring to make it work this way. First remove the "innards" from a burned-out 60 watt frosted bulb. With pliers, crush the black composition at tip of lamp base (Fig. 2). Shake out composition and remove brass button. With brass shell opening clear, insert plier handle and tap sharply, thus breaking off glass stem inside lamp (Fig. 3). Pull out glass stem and burned out filament through open-

ing in bottom of brass screw base (Fig. 4).

Obtain an anodized hole plug at an auto accessory or radio supply store, and a $11 / 2$ volt penlight bulb and a penlight battery. Cut a $3 / 8 \mathrm{in}$. hole in the hole plug. Insert pen-cell into plug, brass tip down. Solder tip of bulb to bottom of battery. Connect thin insulated wire from brass shell of penlight bulb to brass shell of hollowed out Mazda bulb. Ream base with closed scissors to admit battery and insert penlight cell assembly into bottom of lamp base (as shown in drawing).

So trick will look natural, insert bulb into a lamp which has been disconnected from the house current. When occasion arises, remove bulb from socket, and hold it in your fingers. Press a dime, small paper clip or pin concealed in your hand against bottom of bulb. This completes circuit from center cap of inverted pen cell to outer brass shell of Mazda lamp and bulb lights up. A paper clip concealed under tongue may be used to light the bulb when held in the teeth. To light bulb in porcelain cleat socket with no connections and resting on a suspended pane of glass (Fig. 1), simply previously short-circuit the two screw terminals on socket with a piece of fine wire.R. R. Doister.



# Professional Electronic Wiring 



A general-purpose power supply is shown scramble-wired above. While it works, it looks bad and is difficulf to troubleshoot. The same power supply is shown cleaned up below. An even more workmanlike job would have resulted if the builder had baen willing to rewire the unit completely.


By HOWARD S. PYLE

WHETHER you build hi-fi or amateur radio equipment, you want gear you can point to with pride. What you are building is something which you expect to be more or less permanent. If and when you have occasion to abandon it, you can ask, and receive a far better price if your wiring, as reflected by your terminal connections and other circuitry, are of professional appearance and workmanship. Fig. 1A shows a "hay-wire" method of termination; Fig. 1B is the professional version. Which of the two
would attract your cold, hard cash.

Figures 2, 3, 4 and 5 illustrate the method of accomplishing the professional touch shown in Fig. 1B. A final touch of spit-and-polish can be given by applying a generous coating of clear lacquer (such as Fuller's ANL232 "Synalac") over wire, sleeving and number tape.

A slack loop consists of nothing more than an excess wire length of 2 or 3 in. at the terminal, where it is formed into either a horseshoe or a complete circle. Use a $1 / 2$-in. or $3 / 4-\mathrm{in}$. wooden dowel to form your circles. Slack loops serve two purposes: they provide sufficient slack in the wire to permit rerouting it to an adjacent terminal in the event of later modification in circuitry and they provide for re-termination to the same terminal without a short splice in case a wire breaks at a lug or soldered connection.

Shielded wire, one or more insulated conductors enclosed in a crosshatch weave of tinned copper, is used in both radio and audio frequency applications to prevent stray radiation of RF fields and to avoid pickup of ac hum and similar disturbing influences on audio leads. Grid wiring to vacuum electron tubes is particularly susceptible to such undesirable influences which then are amplified in the tube; microphone wiring should always be in shielded conductors. Frequently the shield itself is used with microphones of the "push-to-talk" variety with a built-in switch. The shield then becomes common and forms part of both the switch and microphone circuits.

Before the advent of plastic insulated conductors, it was possible, by skillful handling, to run a small solder "collar" around tine
end of the shielded braid--even include a short length of wire in the collar which could be used to terminate the shield on a chassis ground-point. 'This is still possible when the conductors themselves are fabric insulated, but not so with plastic which will melt completely with application of sufficient heat to the shield to permit a hot solder joint.

The answer? Well, if the shield is merely to be ended or tied-off without grounding, put a drop of liquid solder or aluminum (both applied cold) on the end of the braid and form it smoothly with your fingers to make a solid collar. Such a collar will set up hard in a few minutes and requires no heat, hence there is no damage to insulation. I use either Warner's Liquid Solder or Duro Liquid Aluminum.

As an alternate method of avoiding fray at the end of shielding, you can pinch the shield between spaghetti sleeving. The sleeve that goes over the conductors, the inner sleeve, should be a snug fit, and still capable of being pushed up under the shield braid; the outer sleeve must be of an inside diameter which will permit sliding over both the shielded braid and the spaghetti on the conductors.

Suppose, however, that you do have to ground the shield at either or both ends. Liquid solders are a mechanical binder only and should not be relied on for electrical connections. A far better method is to form a pig-tail directly with the end of the braid itself. This can be done neatly and effectively by following the steps illustrated in Fig. 3. First, push the shield back up the wire to form a bulge or hump in the shielding by working the braid apart. Using the same tool, pick the conductors out of the shielding, one at a time in small loops. Once you have them within easy finger grasp, withdraw them completely from the short end of the


PREPARATION OF WIRES

## $A$

LAYMAN'S TERMINATION


EXPOSED WIRE IF SOLDER
LUG IS USED

 TOOL AND DIVIDE INTO THIRDS
shield.
Next, separate the wires of the shield which will form the short pig-tail by using the pick or a nail to unbraid the web. Divide the resulting individual wires into approximate thirds and braid them tightly like a small girl's hairdo. Seal the end of the pig-tail with a spot of hot solder and fit it with a lug, either the solder type or solderless, as you prefer.

Cabling and Lacing. In forming your wiring prior to cabling and lacing, do not attempt to run wires from point-to-point by the shortest route. Except in a few isolated instances (high-frequency carriers, for example), whether a wire is 5 in . long or 7 in . long is of no consequence. Using that reasoning, you will be able to form your wires to follow the line of the chassis, making short, rounded $90^{\circ}$ turns at the corners and at branches leaving the main cable harness. If, by extending some individual wire for a few inches you can include it in a main cable harness, do so. If you are careful to use shielded wire wherever the schematic you are working from specifies, or, if not so designated, wherever you are carrying radio or audio frequency such as microphone and speaker leads and wiring to the grid circuits of vacuum tubes, you'll have no trouble. See that all such shielded wires are solidly grounded to the chassis at both ends either by the pig-tail method of Fig. 3 or by small wiring clamps screwed to the chassis.
Now to the actual cabling and lacing. Obviously if you are to run in one harness a number of wires that will terminate at scattered points, each wire will be of a different length. Be sure that each is long enough or you'll have the tedious job of unlacing all of your harness to replace the short wire. You can cut to exact length when you come to the point of actual termination but better to

prefer to "ring out" each individual wire with a buzzer or an ohmmeter as a doublecheck, when terminating.

Professional practice dictates the use of "lock-stitch" which, while really simple, almost defies written description (see Fig. 4). Start your lacing about an inch from the main termination point of your harness . . . a connection block for instance. If it is a harness of relatively few small wires, space the twine rings around the harness about $1 / 2 \mathrm{in}$. apart. If it is a larger number of heavier wires, 1 -in. spacing will be adequate. Multi-wire harnesses of more than $1-\mathrm{in}$. cross-section can be laced every 2 in., but if 6 -cord lacing twine is used it should be doubled for added strength.

A good rule to follow is to space the twine rings for a distance about equal to the dia. of the bundled harness and use the twine doubled on any harness over 1 in. Tie-off the ends, both at the starting point of the lacing and at completion, with an ordinary square knot, double tied.

Chassis wiring by the cabled and laced method does not mean that all wires of the harness will terminate in the same area at each end.
begin by making each wire a few inches longer than necessary.

In some instances you can completely preform your harness, including the lacing, right on the bench and have it fall in proper place in your chassis. Where chassis layout makes such pre-fabrication of a harness impossible, it will be necessary to place each individual wire in proper position in the chassis, routing each one carefully alongside the others with which it is to be cabled and making the final termination at each end. Hold the bundle in place temporarily with a few ties here and there to maintain the final harness form. Then, when all wiring for that particular harness run is complete, lace it in place in the chassis.

One tip on pre-fabrication: use different color wires for ready identification individually at each end of the harness. If your available wire stock is insufficient to permit this color coding, mark both ends of each wire with adhesive number tapes or tags. Some craftsmen

There will be considerable branch wiring from the main harness trunk. As your lacing progresses, you reach various points where one or more wires leave the harness to connect to an adjacent component.

At this point, wrap the twin ring twice around the main harness and bend the wires leaving the harness $90^{\circ}$ toward the terminals to which they will connect. Then proceed with your lacing to the next branch. This will result in a tapered harness (see Fig. 5).

Answers to Photo Quiz on Page 103
I. Rotary wafer switch.
2. Roll of electrician's rubber tape.
3. Pilot lamp.
4. TV lead-in stand-off insulator.
5. Top of spray can of service chemical.
6. Diagonal cutters.

Low-power amplifiers (20- little job with enough walwatters) cost about three lop to enable anyone to dollars a watt to build. The break his lease by popular 75 -watt Leasebreaker can request within three minone dollar a watt.

# The Leasebreaker 

Not the perfect amplifier-that hasn't been builtbut an outstanding bargain in high-power amplifiers. Net prise, including tubes, is \$75-or a dollar per watt

By LEE/SHERIDAN

WHEN we decided we needed a new amplifier we knew we wanted the greatest possible power output per dollar of cost. What we achieved was a dandy
ters. Since a sine average energy than does program material of the same peak amplitude, it is permissible to use much lighter components than would

be required for continuous sinewave operation. It's only necessary that components be capable of handling the occasional peaks in program material.
For the amplifier, we felt that the simplest configuration would be a pentode gain stage, a splitload phase inverter, and the output stage. For the gain stage, a 6AU6 vacuum tube is excellent, very low in noise and capable of high gain. In our circuit, it provides a gain of 200 , with well over 200 -v peak-to-peak of signal delivered to the following stage.
A 6S4 is used for the phase inverter; set to draw 10 milliamperes, it can deliver 150 v peak-topeak at the output grids, which require about 100 v for full output. The heavy degeneration provides a very high impedance for the 6AU6 to work into, thus raising its gain-while the 6S4 presents a fairly low driving impedance to the output grids.

But if the amplifier is to be stable under feedback, it must be "tamed." At the high-frequency end, this poses a problem due to the low resonant frequency of the output transformer. We solved this problem by the joint action of three devices: a series RC (R8 and C4, see Fig. 2) from plate to ground in the first stage, another across the primary of the output transformer (R19 and C7), and the customary capacitor (C9) across the feedback resistor (R34).

Low-frequency stabilization is also achieved by the use of a cathode capacitor in the input stage, coupling capacitors and grid resistors feeding the output stage, and the falling response of the output transformer itself.

In consequence, The Leasebreaker is so stable that the removal of the load has absolutely no effect on frequency response!

We consider that any rise in response at the end of the passband is the mark of an unstable amplifier-and judging from what we've seen, unstable amplifiers are in the majority today. Our Leasebreaker, however, employs 20 db of feedback overall, and the response at the ends of the passband is never anything but a smooth drop below 20 cycles and from 20 kc out to 500 kc . At this point, there is a slight resonance, but the response is over 30 db down from midband. No value of capacity up to 10 mfd produced oscillation when shunted across the 16 -ohm load.

Think we're making too much ado about this business of stability? Remember-an amplifier of this power capacity ( 75 watts) can, if it runs away, ruin a speaker in just a few seconds!


The power supply. We used a Stancor PC8414 transformer, which delivers 600 volts on each side of center at 200 mils. While this would overheat badly if the amplifier were driven to full output continuously by a sinusoidal signal, it's perfectly capable of handling occasional high level peaks.
For the rectifier, we think there's no argument about a 5R4, and one tube is adequate. A single $15 \mathrm{mfd}, 1000-\mathrm{v}$ oil slug (C11) is used in the high-voltage section. The ripple here is distressing ( 35 v peak-to-peak quiescent, rising to 75 v at full load), but a $40-40-10 \mathrm{mfd}$, 450 -v electrolytic capacitor (C8) provides the filtering necessary for lower level stages and the screens of the output stage.

To protect the electrolytic capacitors and to make things easier on the tubes by giving the heaters a chance to come up to operating temperature before the high voltage hits, we used an Amperite thermostatic delay relay-with a 5 -v heater so there is no potential difference

between heater and contacts. We preferred the octal-based relay to the miniature for this job because the octal socket provides a longer flashover path to ground than does the miniature.

A simple bias supply is provided with a configuration which permits use of a dual 40 mfd can. An OB2 glow tube holds the bias voltage constant. With the values shown, it draws about 10 mils. Some selection of the 5100 and 4700 ohm resistors may be needed to get just exactly minus- 50 volts at the tap, and these should be 2 -watt units for best temperature stability.

Screen regulation is an absolute necessity if maximum power is to be developed. We blithely started with VR tubes and encountered trouble! By the time the screens are stabilized the tubes are beyond their ratings when there's no signal. And there is also considerable additional heat dissipation.

So we cast about for a simple solution and came up with that shown in Fig. 2. Note that the conditions which increase the screen drain also pull down the supply voltage considerably, due to the poor high-voltage regulation.
The 12BH7 is a husky

Bottom-chassis view of the Leasebreaker. (Photo was taken before addition of C12.)
twin triode, designed for use as a TV vertical deflection amplifier, with a $500-\mathrm{v}$ plate voltage rating and a permissible dissipation of 3.5 watts per section. The two sections are connected in series, with the upper as pass tube and the lower as dc amplifier. The control voltage divider is returned to the minus-105-v bias supply, to keep the dc amplifier grid near ground, yet allow large swings.

In operation, this has proved an excellent little regulator, its output voltage being the same at full output as at zero signal, with a rise of about 10 v in the middle range. Initially, the output voltage had a tendency to drift with changes in line voltage, but the addition of R26 reduced this drift to an acceptable range. Correction is not complete, of course, because the de amplifier does not have sufficient gain.

Construction. We constructed The Leasebreaker compactly on a $2 \times 7 \times 13-\mathrm{in}$. chassis, and the large transformers and filter capacitor must butt against each other in order to fit (see Figs. 1, 3 and 4). Tubes and electrolytic capacitors are placed along the front, the 6146's being staggered, rather than side by side, to reduce the heat problem.
A neat terminal board effect is achieved through the use of Cinch-Jones 2000 series terminal strips mounted in parallel pairs (See Fig. 5). For the input stage, we used 2006's; a 2005 and 2007 for the phase inverter, 2005's for the screen regulator, and 2008's for mounting miscellaneous power supply resistors. This scheme is a real space saver, since tube sockets may easily be straddled.

The two 15 K 20 -watt dropping resistors are mounted with long screws through the back apron of the chassis. Be sure to use an insulated shoulder washer here and several insulated flat washers on each end!

Cinch type 2C7 sockets were used for the two electrolytic cans. Note that the outer contacts are tied together to make maximum use of contact area. The bias supply capacitor should be provided with an insulated sleeve, since its can is negative with respect to the chassis.

A double ground system is used to avoid hum troubles, for the charging current through the 15 mfd capacitor is quite high and can easily give trouble if it gets into a common ground bus. For this reason, a power supply ground is made right at the negative terminal of the $15-\mathrm{mfd}$ capacitor to which transformers, electrolytic capacitors and 6146 cathodes are returned. A separate signal ground is made at the input terminals, to which all other grounds are returned through separate ground wires.

Good quality steatite sockets should be used, at least for the rectifier and delay relay, since these parts carry the full 750 volts.

Use an aluminum chassis, be-

MATERIALS LIST-LEASEBREAKER

| Desig. | Description |
| :---: | :---: |
| T1 | 45000 ohms plate-to-plate to $4,8,16$ ohms (Triad S-42A) |
| T2 | $600-0.600 \mathrm{v}, 220 \mathrm{ma} ; 5 \mathrm{v}, 3 \mathrm{a} ; 2 \times 6.3 \mathrm{v}, 3 \mathrm{a}$ (Stancor PC-8414) |
| T3 | 115v. 15ma; 6.3a, 0.6a (Stancor PS8415, Triad R-54X) |
| V1 | 6AU6 |
| V2 | 6S4 |
| V3, V4 | 6146 |
| V5 | 5R4 |
| V6 | $0 \mathrm{B2}$ |
| V7 | 12BH7 |
| V8 | Amperite 5N015 |
| SR1 | $50 \mathrm{ma}, 115-\mathrm{r}$ selenium rectifier |
| Cl | $100 \mathrm{mfd}, 25-\mathrm{v}$ electrolytic |
| C2 | $0.5 \mathrm{mfd}, 600-\mathrm{v}$ bathtub or 0.5 mfd , 400-v molded paper tubular |
| C3 | $0.25 \mathrm{mfd}, 600-\mathrm{v}$ molded paper tubular |
| C4 | 100 mmfd mica |
| C5, 66 | $0.05 \mathrm{mfd}, 600-\mathrm{y}$ molded paper tubular (matched, if possible) |
| C7 | 1500 mmfd , mica |
| C8 | $40-40-10 \mathrm{mfd}, 450-\mathrm{v}$ electrolytic (MalTory FP 376.8) |
| C9 | 10000/ $/$ Zvc mmfd |
| c10 | $40-40 \mathrm{mfd}, 450-\mathrm{v}$ electrolytic (Mallory FP-238) |
| $\mathrm{Cl1}$ | $15 \mathrm{mfd}, 1000-\mathrm{v}$ oil $0.5 \mathrm{mfd}, 200-\mathrm{v}$ molded paper tubular |

(All resistors $1 / 2$ watt $10 \%$ unless otherwise indicated)

| R1 | 470 k |
| :---: | :---: |
| R2 | 10 K |
| R3 | 100 |
| R4 | 910, 5\% |
| R5 | 270 K, 2 |
| R6 | 820K |
| R7 | 470 K |
| R8 | 10 K |
| R9 | 1 meg |
| R10 | 1500 w |
| R11, R12 | $10 \mathrm{~K}, 2 \mathrm{w}$ |
| R13, R14 | 100 K ma |
| R15, R16, |  |
| R17, 18 | 100 |
| R19 | 4700 2w |
| R20 | 15 |
| $R 21$ | 820 |
| R22 | 470 |
| R23 | 5100, 2w, |
| R24 | 4700, 2w |
| R25 | 100 K |
| R26 | 330 K |
| R27 | 1.8 meo |
| R28 | 33 k 1w |
| R29 | 68 K 1 w |
| R30 | 10 K 10 w |
| R31, R32 | 15 K 20 w |
| R33 | 100 Klw |
| R34 | $550 \checkmark$ Zvc |

## Miscellaneous

Millen \#36002 ceramic plate caps
SPST toggle switch
extractor fuse holder
3AG, 3-amp fuse
Cinch \#2008 terminal strips
Cinch \#2007 terminal strips
Cinch \#2006 terminal strips
Cinch \#2005 terminal strips
Cambridge Thermionics \#X2006 (or equivalent) insulated terminals
$2 \times 7 \times 13^{\prime \prime}$ aluminum chassis
7-pin miniature tube sockets
9 -pin miniature tube sockets
octal tuhe sockets
Cinch \#2C7. FP capacitor sockets
Eby \#56-2 (or equivalent) screw terminal strip
Eby \#56.4 (or equivalent) screw terminal strip
hook-up wire, rosin solder, misc. hardware
cause the high heat conductivity of the metal makes the whole chassis surface available as a radiator. While heat dissipation of this amplifier is considerably below that of most others in its power class, its compact design does keep the dissipation per unit volume fairly high. For this reason, The Leasebreaker should never be enclosed in a small space.
Testing. With the 5 R 4 removed, a dummy load connected and the feedback loop open, the first job is to adjust the bias. Select 4700 and 5100 ohm resistors so that the bias is mi-nus-50 volts. If necessary, other resistors can be shunted across one or the other for vernier adjustment.
Next, if a milliameter is available, check the current drawn by the OB2, which should be around 10 mils. Variation of R21, an 820 -ohm resistor, can raise or lower this as desired.

To set the screen voltage, replace the 5R4 and turn on the power. The high voltage at the $15-\mathrm{mfd}$ capacitor should be around 750 v. Now check screen voltage. If it is not in the range of $200-215 \mathrm{v}$, shunt one of the resistors in the control voltage divider. Shunting R27 reduces the screen voltage; shunting R25 increases it. Use high values for the first try; the circuit is quite sensitive.

When screen voltage is set, the various other voltages can be checked. A VTVM should be used to measure the 6AU6 plate and screen. If results are

satisfactory, feed a 400 -cycle test signal into the input and turn up its level. The a plifier should deliver 75 watts ( 33 v rms inio a 15 -ohm load) just at the clipping level as seen on a scope.
As regards the feedback loop, if the output transformer primary leads have been connected as indicated, and if the manufacturer is uniform in attaching leads to the windings, the feedback should be negative. With the oscillator providing the 400 -cycle test signal set for low output, watch the output signal on a scope while touching a 22 K resistor across the feedback terminals. If the output decreases, the feedback is indeed negative and the proper feedback resistor may be installed. If the output increases, reverse the output transformer primary leads and try again. It is wise to use the 22 K resistor for the initial test so that if the feedback happens to be positive, the amplifier will be spared the burden of violent oscillation. Resistor R34 and capacitor C9 are chosen according to voice coil impedance (see Materials List); but explicitly:

| Voice Coil |  |  |
| :---: | :---: | :---: |
| Impedance | $R 34$ | $C 9$ |
| 16 ohms | 150 ohms | 2500 mmf |
| 8 ohms | 200 ohms | 3500 mmf |
| 4 ohms | 270 ohms | 5000 mmf |

With the feedback loop closed, a frequency response run at a level of about 1 -v output may be made. The amplifier should be down about 0.5 db at 20 and 20,000 cycles, and should fall continuously outside of those points as discussed previously.

Note particularly-this amplifier is intended only to be flat to 20 kc , not to 100 kc ! People accustomed to $100-\mathrm{kc}$ bandwidth and a fancy square wave response will be disappointed by this-but our aim was a stable amplifier. This type of response is the price of using a cheap output transformer. Similarly at the low end-but it should be noted that smoothly falling response below 20 cycles is beneficial in attenuating rumble from turntables.

In checking the power output, the amplifier
should deliver 65 watts at 30 cycles and 75 watts at 40 cycles and above, at the clipping level and just before noticeable flattening appears on the scope. Full power should not be run continuously above 5000 cycles since the network across the output transformer primary begins to absorb power and the 4700 ohm resistor R19 will "head west" in a big hurry.

Instead, make quick checks at 10 and 15 kc by turning up the oscillator for no more than a second or two, reading the meter and immediately turning down the oscillator. Power should be 65 watts at 10 kc and 40 watts at 15 kilocycles.

This drooping power response does no harm to program material where the vast bulk of power lies below 1000 cycles, and the amplifier will break up at low frequencies long before the point where high-frequency power will endanger the 4700 -ohm resistor.

The Leasebreaker may be used with any standard pre-amplifier, although we don't recommend that the preamp power be drawn from the amplifier, as it is very difficult to provide sufficient plate supply decoupling to make the system really stable at sub-audible frequencies. Either the preamp should be selfpowered, or a separate power supply should be built for it. Voltage gain from input to 16ohm output is 20 , hence 1 v in will produce 25 watts-a sensitivity of the same order as any usual home music amplifier.

Internal impedance as measured at the 16 ohm output tap is 1.3 ohms, resulting in a damping factor of 12 , which is adequate for restricting speaker hangover. Total hum and noise output with the input shorted is less than 5 millivolts at the 16 -ohm tap, or better than 75 db below 60 watts output. This is predominantly power-supply ripple due to imbalance in the output tubes, but 5 millivolts of hum is so low as to be barely audible a foot from a good speaker.

Harmonic distortion was measured as a function of frequency for several power levels and the results were about what might be expected.

The low-level distortion is higher than that in units of the Williamson type, but not seriously, since any reasonable amplifier distortion pales into insignificance compared to that contributed by even the best of speakers. The curves (Fig. 7) show the usual rise at the ends of the range, the low end curve at 60 watts being due to the onset of core saturation. The high end rise, however, is only of academic interest since the 10 - and 60 -watt power levels will never be reached by program material at frequencies above 1000 cycles.

If you haven't seen curves like Fig. 7 before, be advised that the usual practice of using only mid-band frequencies in distortion ratings tends to make an amplifier look better than it really is.

## Radio Tuner for Child's Phono

## Your child can have his phono and radio, tooall in one package

By HOMER L. DAVIDSON



Enjoyment is doubled with the addition of a radio tuner to a child's record player.

Be careful not to damage the crystal cartridge by rough handling. Generally, a small pin or swivel screw holds the pickup arm to the horizontal swivel bracket. Remove this, and the arm can be taken off. Be sure to unsolder the two small wires that go from the amplifier to the pickup arm.

Phono Arm Repair. Drill a $\% / 22$-in. hole in the middle of the phono pickup arm. This hole should not be drilled too far back on the arm because of the sharp angle in lifting the arm before the male plug is inserted into the radio tuner. Two small, flexible wires are soldered to each terminal and brought out so they can be soldered to the crystal cartridge connection. Do not solder these connections until they are pulled off the cartridge. Heat will sometimes damage the crystal cartridge. Place the connections back on the cartridge, and the arm is ready to go. Now remount the phono arm

THIS tiny RF tuner can easily be attached to the young fry's record player, converting it to a radio receiver. The tuner consists of a tuned input stage with a small, variable capacitor. The separated signal is then rectified to audio power and amplified by a small transistor. From here the signal is applied to the pick-up arm and then amplified by the phono-amplifier itself.

Circuit. The RF signal is picked up from a small lead that should be clipped to an outside antenna for best results. For local stations, a bed spring or metal window frame will pick up enough signal to drive the loudspeaker. A small ferrite coil with a tunable slug and a variable capacitor separates the stations. The slug can be tuned in or out to separate several local stations if one (or more) seems to bother the desired station.
A fixed crystal diode detects the audio signal, which is then amplified by the 2N107 transistor. The transistor was added here to help amplify the weak detected signal, as some of the cheaper record players have only one amplifying tube. Since all phonographs have their own volume control, there was no need to place one upon the small tuner. Also, most record players have a tone control, but most radios do not.
A small, fixed capacitor couples the audio signal to the phono pickup arm. It is best to first remove the record player arm from the phonograph before wiring up the male jack.
in its original position. All that you're doing is making a simple way to plug the phono amplifier into the radio tuner box.

Battery and Cabinet Construction. If your case is large enough, use two penlite cells in series or an Eveready 4.05 v . (E133) or an RCA 4.5 v . battery. Since my plastic case was only $11 / 4 \times 11 / 2 \times 21 / 4 \mathrm{in}$., I had to devise a smaller battery: Three small button mercury cells were used to furnish 4.5 v . of collector voltage. These batteries are the size of small buttons, and being so small, must be mounted in such a way that good contact is made. Cut the closed end from the zinc casing of a small penlite cell to a length of $3 / 4 \mathrm{in}$. Clean out all loose carbon and residue from the inside of the cell. Cut a piece of thin cardboard long enough to just meet the ends when inserted inside of the penlite zinc case. Drop a small


|  | MATERIALS LIST-CHILD'S PHONO-RADIO |
| :---: | :---: |
| Desig. | Description |
| C1, C2 | . 01 mfd flat ceramic capacitors |
| D | IN64 xtal fixed diode |
| C3 | 365 mfd miniature variable capacitor (Lafayette MS-274) |
| 1 | ferrite coil (Lafayette MS.11) |
| R1 | 10,000 ohm resistor, $1 / 2$ watt |
| R2 | 220,000 ohm resistor, 1/2 watt |
| R3 | $47,000 \mathrm{ohm}$ resistor, $1 / 2$ watt |
| SW | SPST switch (Lafayette VC-42 or equivalent to fit casesuch as Cutter-Hammer's type 8098-K3, Allied 34B510) |
| TR | GE 2N107 |
| Batt | $4.5 \times$ (see text) |
| plug | miniature plug (Lafayette MS.284) |
| jack | miniature jack (Lafayette MS-283) |
|  | plastic cabinet (Lafayette MS-298 or other) |

shiny split lock washer into the bottom of the case, and insert the first button battery. Insert all three batteries, observing correct polarity. The batteries will fit snugly, and should be pressed together as tightly as possible.

The center contact connector and mounting screw are bolted to a small fiber washer (see Figure 5). Use the smallest bolt and nut combination here, so that they do not touch the crimped sides.

Place the washer and bolt into the top of the battery. While pressing down on the bolt, crimp the edges of the zinc case over the top of the insulated washer. Be very careful not to touch the center post to the crimped edge, as this will short out the newly constructed battery. The little battery is ready to mount with its own mounting screw.

The plastic case I used was the container from an Argonne (Lafayette) interstage transformer. Any plastic box at least $11 / \mathrm{s}$ in. high, but not too high to fit under the pickup arm can be used. If no other box is available, you will have to use Lafayette's MS-298 (11/8 $\mathrm{x} 31 / 8 \times 37 / 8 \mathrm{in}$.). Drill holes for the ferrite coil assembly, variable capacitor and on-off switch. Mount the female plug atop the case. You can use the tip of the soldering iron to make the larger holes in the plastic, as long as you don't hold the iron to the case too long.

After all the holes are drilled, the large components are mounted. First, the capacitor and switch are mounted, then the battery.


Parts layout of the RF tuner in a tiny $11 / 4 \times 1 / 2 \times 21 / 2$ in. box. Any case you have available may be used (see text).

Before mounting the ferrite coil, solder the diode and resistor into place, and solder two small pigtails to each side. This will save a lot of close soldering down inside the case. The small resistor, capacitors and transistor can be soldered as they are mounted. While the lid is open, solder two small flexible leads to the female plug and to its corresponding circuit. The unit can now be wired. Be sure the battery polarity is observed.

The unit is placed directly under the pickup arm and plugged into it. Turn the record player on, and let the tube heat up a few seconds. Hook an outside antenna or long wire to the small antenna wire. Then, turn on the radio-tuner. If there is hum, reverse the ac plug on the phono.

Surprising results were obtained with the small radio-tuner on local and distant stations. The batteries should last a long time, as only $1 / 5$ th of a milliampere is pulled from them.

The small plastic case can now be bolted to the phonograph mounting board. Always turn the batteries off when only the record player is being used to play records. The pickup arm mounting holder can be removed or re-mounted closer toward the turntable if so desired.



## ELECTRON TUBE ANAGRAM

Although transistors are rapidly replacing electron tubes in many applications, tubes still perform jobs that fransistors cannot handle. This anagram puzzle pertains entirely to electron tube terminology.

Can you correctly fill in all the empty blocks with the correct words, letters, symbols and abbreviations? When you have the blocks all filled, check your solution with the correct one on page 152.

By JOHN A. COMSTOCK

## ACROSS:

1) Seven-element electron tube.
2) $A=$ cutoff tube is one in which the control grid spircls areuniformly spaced.
3) A gain compensating vacuum tube circuit (abbr.).
4) A straight line drawing ccross a series of plate cur-rent-plate voltage curves.
5) A — tron is $\alpha$ five-element tube having two plates.
6) Outputpower (abbr.).
7) Target (abbr.).
8) A vacuum tube circuit that sets up and maintains sustained oscillations. (abbr.).
9) A tube in which the electron stream is concentrated or 'focused" for greater amplification.
10) To reduce this, some tubes have a center-tapped filament.
11) Unit of current usually applied io electron tubes. (abbr.).
12) A floating grid.
13) A cathode-ray tuning indicator tube is sometimes called a "magic-
14) A tube noise effect that limits high amplification.
15) Negative potential applied to a control grid.
16) Interelectrode capacitance between grid and plate (letters symbol).
17) Part of a CRT tube.
18) _uration is the point recched when current is
maximum obtainable by increasing plate voltage or cathode temperature.
19) Particles heavier than electrons that are harmful to a CRT tube's screen.
20) A variable resistor used in many vacuum tube circuits (abbr.).
21) An electron tube's signalinput element.
22) Electron flow effect in an electron tube.
23) The "at-rest" potential applied to tube elements.
24) Unit of conductance.
25) A cathode that emits electrons when struck by light rays.
26) Heater tap for pilot lamp (letters symbol).
27) $-\quad=\operatorname{Rp} \times \mathrm{Gm}$ (supply missing term).
28) The alkaliearth metal introduced into a vacuum tube to remove residual gas.
29) $u=\frac{\mathrm{dEp}}{?}$ (supply missing term).

## DOWN:

I) A -_-wave rectifier has only one plate.
2) Electron receiving element.
3) $u=\frac{?}{d E g}$ (supply missing term).
5) A ——ode tube is one having $\alpha$ total of six elements.
6) The ratio of a small change in plaie voltage divi ed by a small ch-inge in plate curceat (letters symbol).
7) $A$ particu'ar vacuum tube element.
8) A tube envelore designation (c.jbr.).

9) Electron tube emit ting element (abbr.).
12) Plate potential (letters symbol).
13) The name of the grid that was added to triodes in 1929.
14) $工=\frac{\mathrm{dIp}}{\mathrm{dEg}}$ (sup.
ply missing term).
17) The name of Lee de Forest's triode tube.
19) The ones used on most octal tubes are of Bakelite.
23) A unilateral vacuum tube circuit (abbr.).
26) Made to determine whether or not a tube is good.
29) Tube connectors.
31) Plate capacitance letters symbol.
34) A tube's second grid (abbr.).
36) A tube base having eightequally spaced pins and a central aligning key.
38) $A$ cutoff tube is sometimes called a "supercontrol" tube.
39) The vacuum tube invented by Fleming.
40) $A$ tube that doesn't contain gas (abbr.).
41) C-bias voltage (letters symbol).
42) Cathode current (letters symbol).
43) An inert gas used in some gaseous electron tubes.
45) Plate current flow (letters symbol).
47) A remote __ off tube is a variable Mu tube.
49) Heaier mid-tap (letters symbol).
50) Grid conductance (letters symbol).
51) Shell designation: metal tube (letters symbol).

## What to Listen for on Short Wave

# 7 all \& Winter 1960 

WINTER on short wave presents a paradox, an important one for the listener. As you probably know, ionization (caused when ultra violet radiation from the sun passes through the atmosphere) is responsible for both the reflection of radio waves back to earth (essential for distant reception) and the absorption (weakening) of radio waves, especially frequencies below 7000 kc . Also commonly known, during winter with shorter days and rays from the sun received more obliquely, ionization is reduced, signals are stronger, and reflection from the ionosphere should decrease at higher frequencies. The latter is not true. Frequencies above 15 mc are normally reflected by the F2 layer, the uppermost portion of the ionosphere, and reflection in this region is actually improved as the earth approaches its winter solstice, the point in the earth's orbit when it is closest to the sun. Why? We don't know and neither does anybody else. Some researchers have linked this phenomenon with temperature but the theory appears to have holes in it.

In any case, the result is a broader range of usable wavelengths with both higher and lower frequencies open. However, there is a second factor to consider, sunspots. Ionization, reflection and absorption all vary directly with the number of "spots" on the sun and right now we have a dropping count. Result, the higher frequencies will be slightly poorer than last winter, but low frequencies will be better. Add to this little or no static on downstair channels and you have prospects for an excellent short wave season.

We should say excellent for the serious listener. If you read the article Tune In On The World in Radio-TV Experimenter \#565, you may recall that I suggested that one way to know other countries was to listen in on local broadcasts intended only for the area from which they originate. This is usually not easy. But many countries do use the lower short wave frequencies for such purposes, particularly in the tropics and in such a country as Russia where one transmitter must cover a good many square miles of sparsely populated territory. Of course you'll still face a language barrier. Which leaves the music. However this is sometimes more revealing than words particularly when the words are propaganda while the music is not too polished folk music.

With reception of local broadcasters as


Verification card from Radio Clube de Mocambique, a semilocal (regional) broadzaster heard throughout the World on 11760 kc . However, as indicated on reverse side of card, this QSL is for reception on the Braadcast Band during the peak peried for lower frequencies, 1953-55. Winter 1960 will represent the very early stages of another such period.

## MOCKOBCKOE РАДИО



Verification letter for Sputniks I and III (no longer broadcasting) heard at 20.005 mc .
the goal, frequencies below 7000 kc . become all important and a dropping sunspot count can be nothing but good news. How far has it dropped? Well, the count has a long way to go but even in April two stations in the 120 meter band, H13C ( 2440 kc , La Romana, Dominican Republic) and Radio Martinique could be heard throughout the eastern Uniied States.

International Broadeasting. If you're new to short wave listening, or you just plain want to listen and keep DXing down to minimum, then the International Bands, 31 through 13


TABLE A: BEST BANDS BY NIGHT AND DAY
meters (see Table A) will interest you most. That boost in the F2 layer will certainly make things better than in the summer. But reception will be slightly poorer than last winter.
The 13 meter band will be open many days to all parts of the world with north and south paths having an edge. Europe will be best during daylight hours on the 19 and 16 meter bands and then at night on the 31 and 25 meter bands. Africa will follow a roughly similar pattern. The 19 and 16 meter bands may remain open the first few hours of darkness with both Europe and Asia received. Such a path will occasionally hold up most of the night with the 25 meter band providing an alternate band for evening reception of the Orient. During the hours after midnight both 25 and 31 meters will produce signals

| TABLE B-GOOD SHORTWAVE LISTENING |  |  |  |
| :---: | :---: | :---: | :---: |
| COUNTRY | frequency IN KC/S | $\begin{aligned} & \text { TIME* } \\ & \text { (EST) } \end{aligned}$ | STATION AND DETAILS |
| WINDWARD ISLANDS | $\begin{gathered} 3365,15085 \\ 5010 \end{gathered}$ | $\begin{aligned} & 1600-2115 \\ & 1600-1730 \end{aligned}$ | West Indies Broadcast Service. Here we have the happy circumstance of a semi-local broatcaster using an international band (after $7: 30$ ). This one intended for the Caribbean Federation (British West Indies) features a variety of local programs which are a blend of British, Caribbean and American cultures. |
| MOZAMBIQUE | 11760 | $\begin{gathered} 2230 \text { until } \\ \text { fadeout } \end{gathered}$ | Another semi-local program in international territory. This will give you a good idea what the English and Afrikaan (Dutch) of Central and South Africa consider entertainment. Programs do not include news. Reception will be best on the Pacific Coast. |
| CONGO REPUBLIC | 11725 | 2100-2145 | Radio Brazzaville. African news from a French point of view. Also French music and French lessons. |
| ISRAEL | $\begin{gathered} 9008 \\ \text { (or } 9725 \text { ) } \end{gathered}$ | 1530-1600 | Kol Israel (or Kol Zion), Zionist picture of Near East news, limited amount of folk music. |
| SWITZERLAND | $\begin{gathered} 11865,9535 \\ \text { and } 6165 \end{gathered}$ | $\begin{gathered} 2030-2215 \\ \text { and } \\ 2315-2400 \end{gathered}$ | Swiss Broadcasting Corporation. Neutral international news (jovernment) followed by democratic West European viewpoint from Swiss newspapers. Has sunspot report once a month. |
| NETHERLANDS | $\begin{aligned} & 15220 \text { (or } \\ & 16 \text { meters) } \\ & 11755 \text { and } \\ & 9590 \\ & \text { (or } 9715 \text { ) } \end{aligned}$ | $\begin{aligned} & 1615 \cdot 1705 \\ & 2130-2210 \end{aligned}$ | Radio Nederland. Most interesting features here are international news and topical talks. |
| GREAT BRITAIN | Several frequencies throughout the bands | 1600-2200 | General Overseas Service, British Broadcasting Corporation. Good example of conservative British programming and thought. |
| JAPAN | $\begin{gathered} 17855,15235 \\ \text { and } 11705 \end{gathered}$ | 1930-2015 | Radio Japan. Features on Japan and a limited amount of Japanese folk music. |
| AUSTRALIA | $\begin{aligned} & 11710 \\ & 11810 \end{aligned}$ | $\begin{aligned} & 0714 \cdot 0845 \\ & 1014-1145 \end{aligned}$ | Radio Australia. Most important feature here is news from the fifth continent. Remainder of program is primarily entertainment. |
| ARGENTINA | $\begin{gathered} 9690 \\ (\text { or } 15345) \end{gathered}$ | $\begin{gathered} 2200-2300 \\ \text { and } \\ 0000-0100 \end{gathered}$ | R.A.E. Compare the polished Argentine music with the more interesting Latin varieties easily heard on 49 and 60 meters. |

[^4]from Asia and the Pacific. Technically this would be the best time for such listening but most broadcasts to North America are made during the more convenient evening hours: Thus 19, 25 and 31 become bands for all parts of the world with the latter pair most dependable.

Possibly you gathered from these predictions the increasing importance of 31 meters. As the sunspot count continues to drop it will become almost irreplaceable in international broadcasting. Unfortunately, it may have to be replaced. Crowding on this band is fast reaching an intolerable saturation, even for the comparatively hardy SWL. As an example, listen to the 15 kc spread between 9585 and 9600 . During the evening we have no less than 5 transmitters in this tiny portion of the radio spectrum, Radio Canada (CKLP), Radio Nederland, Radio Cultura de Bahia (ZYN 29), Radio Moscow, Radio Republik Indonesia (YDF6) and the British Broadcasting Corp. (GRY). Of this group, ZYN29 and YD F6 would be the newer, and it is this continuous stream of new tropical stations coming on the band which is mainly responsible for such overloaded channels. Of course they have as much right here as any other country.

The International Telecommunications Union is taking steps to alleviate this situation but the ITU does not have enforcement powers.

If the malady is not cured, or at least arrested, broadcasters will either have to concentrate on $25 \mathrm{me}-$ ters, in which case that band might soon look like 31, or switch their programs to less advantageous afternoon periods.

# Handy Foot Switch 

AFOOT switch on your table saw or drill press may limit the damage that can occur in the event of an accident. A foot switch comes in handy at the telephone to mute a blaring radio or near your easy chair to kill TV commercials. There are uses for the foot switch in the kitchen, too.

There are several types of switches that may be employed for foot switch duty. Several commercial foot switches, some of them in the form of a mat, are available. But these switches are rather expensive. You can make your own from inexpensive basic switch units, enabling you to choose according to your power and function requirements.

You'll want either a positive action switch, which remains on once you switch it, or a momentary contact switch, which is only on when you hold it on. A positive action switch may be desirable for a foot switch for your wife's electric mixer; a momentary contact switch is desirable for power tools since the natural tendency in an emergency is to release the switch.

Power handling ability is important too. Switches are rated by volts and amps rather than by watts. To determine the amperage of an appliance, divide the wattage of the device by the voltage, usually about 120 . Thus, the switch required for a 600 watt appliance must have at least a 5 amp . rating at 120 v . Another point to remember is that switches

are rated for resistive loads. Devices which involve coils or capacitors (for example, anything containing a motor) usually demand currents in excess of the current computed by this method. It's usually desirable to use a switch that can handle more current than the controlled appliance requires.

The circuit for a practical foot switch is shown in Figure 1. The SPST switch is connected in one side of the ac line. A plug is provided for easy connection to any ac outlet. A receptacle is provided so that the switch may be used to control any or several appliances. The back view of the unit is shown in Figure 2. The switch is housed in a small metal box. A $1 / 2-\mathrm{in}$. hole drilled in or near the center of the front side of the box is required for the switch. A $3 / 8-\mathrm{in}$. hole is needed in the end of the box for the line cord. Insert a rubber grommet in the end hole. Double a convenience outlet extension cord on itself near the outlet end, and push the doubled end


Chassis view of switch before attaching back.
 SPEAKER MUTING FOOT SWITCH

Speaker muting foot switch. $\mathbf{X}$ indicates disconnection of transformer lead from loudspeaker.
through the grommet into the metal box. Mount the switch, separate the parallel conductors, and connect them and solder. Wrap tape around the cord next to the grommet on the inside of the metal box as a strain relief. The box may be fastened to the floor with four small brackets attached to the sides. The connection to the line and to a specific power tool can be made permanent, too. If current exceeds 5 amps , a permanent installation is desirable.

Several switches are listed in the materials list. Pick the one that suits your function and current requirements. Note that you can obtain a normally on switch which will turn off when you place your foot on it. This type of switch placed near the phone with radio or TV set connected to the outlet is handy for turning either of these blaring contraptions off during a phone conversation. An alternate scheme which utilizes a normally on switch to mute the audio on a TV set from your easy chair during commercials is shown in Figure 3. In this case the switch is connected in the speaker coil circuit and does not control high voltages or currents.-Frank Woods, Jr.

[^5]
## Transmitter for the Novice



HERE'S a compact 75-watt transmitter that even a Novice YL can build. In fact, a Novice XYL did build it after her husband drilled the panel and took over as babysitter. The rig puts out a good signal on 40 and 80 meters, featuring bandswitching, and can be used either at home or in the car with a suitable power supply.

The two-tube circuit shown in Fig. 2 fits into a U.S. Army 30 cal. ammunition tin, available at surplus stores. The $31 / 4 \times 63 / 4 \times$ $101 / 4-\mathrm{in}$. cabinet is modern enough to enhance any shack, and small enough to fit comfortably under the dash of even a foreign car. If an ammo tin is not available, the circuit can easily be enclosed in a small commercial
metal cabinet available from radio supply houses.

The transmitter is built in a $53 / 4 \times 93 / 4$-in. hardboard chassis, with a $31 / 4 \times 101 / 8$-in. metal panel bracket-attached. Use two brackets of any convenient size and sturdy enough to support the panel, which extends about $1 / 4-\mathrm{in}$. below the Masonite.

Drill all the panel holes before fastening the panel to the chassis. The power socket, key jack, band switch, tuning capacitors, dial light jewel, and antenna jack mount on this panel, the remainder of the components mount on the chassis. The 807 socket mounts on an aluminum bracket $13 / 4-\mathrm{in}$. high at the right-rear of the chassis, leaving plenty of


| Desig. | Description | Desig. | Description |
| :---: | :---: | :---: | :---: |
| Cl | . 047 mfd 200 wv tubular | R1 | 47,000 ohm, $1 / 2$ watt |
| C2 | 50 mmfd mica | R2 | 47,000 ohm: 1 watt |
| C3 | 30 mmfd mica | R3 | 12,500 ohm, 10 watt |
| C4 | . 001 mfd 1 kv dise | R4 | $25,000 \mathrm{ohm}$, 10 watt (Arrow Hart \& Heumen +20994 NV |
| c5 | .001 mfd 1.5 kv tubular | Sl | SPST toggle switch (Arrow-Hart \& Hegmen \#20994NV) |
| C6 | 365 mmfd single gang broadcast type variable (Ptilmore) | V1 | 6 J 5 vacuam tube |
| C7 | $5-100 \mathrm{mmfd}$ variable (Bud MC 1873) | V2 | 807 vacuum tube ${ }^{8}$ |
| C8 | . 0047 mfd 1 kv , disc | Xtal | 80- or 40-meter crystal-for Novice band 3750 KC to |
| c9 | . $001 \mathrm{mfd}, 1 \mathrm{kv}$, dise |  | 3800 KC ( 80 M ) or 7150 to 7200 KC ( 40 M ) |
| C10 | . $001 \mathrm{mfd}, 1 \mathrm{kv}$ disc | 20 | $6-32 \times 1 / 4^{\prime \prime}$ machine screws and nuts |
| C11 | . $001 \mathrm{mfd}, 1 \mathrm{kv}$, dise | 10 | \#8 terminal lugs |
| J1 | phono jack, single circuit (Mallory) | 2 | single lug terminal strips |
| J2 | miniature coax jack | 1 | dial lamp jewel |
| L1 | 27 turns \#22 enameled close wound on $1^{\prime \prime}$ form, tapp | 1 | ceramic octal socket (6.35) |
|  | 15 turns from bottom | 1 | 5 -prong socket (807) |
| 12 | 10 turns \#22 enameled close wound over top half of Li | 2 | octal wafer sockets (xtal and power sockets) |
| 13 | 10 turns $\# 22$ or $\# 18$ enameled close wound $1 / 2^{\prime \prime}$ form +1455 18-V pilot lamp | 1 | octal plug (for power cable) |
| La | \#1455 $18 . \mathrm{V}$ pilot lamp ${ }^{2} 5$ mhy, 100 ma RF choke ( ${ }^{\text {ational) }}$ | 1 pe | hardboard $3 / 4 \times 5 \times 10^{\prime \prime}$ (chassis) |
| RFCC 1 R |  | 1 pc | 1/16 $6^{\prime \prime}$ steel or aluminum $31 / 4 \times 10^{\prime \prime}$ (panel) |
| RFO | on $50-0 \mathrm{hm}$, 1-watt resistor | 6 ft | 4 -wire rubber insulated cable (insulated for 1000 volts) |

room for the 807. Place the tank coil between the panel and the 807 (Fig. 3).
Mount the socket for the 6J5 on the left side of the chassis. Clip the mounting saddle of the socket away with a pair of snips and drill holes in the hardboard so that the socket solder lugs extend through the chassis. These holes are aligned by first drilling the key hole for the key pin of the 6J5. Put a drop of finger-nail polish on the pins of the 6J5 and press it against the chassis with the key in the drilled hole. The polish will mark hole locations. After drilling, press the lugs into the holes until the socket is flush with the chassis. Bend the lugs back so that they lock the socket in place.

Mount the remainder of the components on \#8 terminal lugs which are fastened to the hardboard by $6-32 \times 1 / 4-\mathrm{in}$. machine screws-except for the two connections of RFC1. This choke is mounted on two single lug terminal strips in order to isolate the high RF potentials from the metal cabinet. Parts layout is not critical, but should be similar to that shown in Fig. 3.

Extend a length of \#12 wire across the front of the chassis and ground it to the panel for a ground bus bar. Connect the 807 mounting bracket to this bar. All ground leads should be connected to this bus, the panel, or the 807 mounting bracket.

Connect the leads to the 655 socket and bring them to the top of the chassis through holes drilled around the tube socket. Indicator lamp terminals must not be grounded; they are supported by two pieces of solid wire.

Coils L1 and L2 are \#22 enameled copper wire wound in a $1-\mathrm{in}$. dia. form. This form can be a commercial unit with mounting brackets, or a cardboard or plastic tube $11 / 2$ -


Components are mounted on terminal lugs, the 807 socket is mounted on an aluminum bracket and the 6 J 5 socket mounts similar to sockets in printed circuitry. A wafer-type octal socket is used for the crystal.
enameled wire close-wound on a $1 / 2$-in. form; RFC 2 can either be a commercial parasitic choke of five turns of \#22 or \#18 enameled wire wound on a 47 ohm , 1 -watt resistor. For the antenna jack (J2 in Fig. 2) use a miniature connector jack of a coax type.


Power supply for novice transmitter.

## POWER SUPPLY PARTS LIST

Desig. Description
Cl 12 mfd. 700 W.V.D.C. electrolytic capacitor (Cornell Dubilier BRHV 712, or equiv.)
CHI 7 or 8 hy. 200 to 250 ma. filter choke (Thordarson 20C56, or equiv.)
Fuse 3 amp fuse, with holder
La \#47 pilot lamp, with holder
PL Line cord, heavy duty
SW1 SPST switch ${ }^{\text {² }}$ (0n-Off switch)
T1 1200 volt c.t. @ 200 to 260 ma. power transformer with 5 volt, 3 amp , winding; 6.4 volt, 3 amp, winding. (Stancor PC-8414, or Burstein-Applebee Co., Kansas City, special \#3B164, or equiv.)
Rect 5U4-GA tube
Misc: 2 octal sockets, chassis, mounting screws, etc.
Note: BA \#38164 transformer has 350 volt tap, at 10 ma , and 5 volt, at 2 amp., windings in secondary. These should be left unconnected if the unit is used.

Use a 3- or 4 -wire cable to connect the transmitter to the power supply. The power supply should be capable of delivering from 500 to $750 v$ at $150 m a$ for plate voltage, and $6.3 v$ at 1.2 amps filament voltage. For fixed use, an inexpensive full-wave rectifier circuit will work. For mobile work use a dynamotor or heavy duty vibrapack. At $500 v$, the input will be about 50 watts; with $750 v$, about 75 watts. A power supply circuit which will serve well is shown in Fig. 4.
Test the Unit on a non-metallic surface before putting it in the cabinet. Plug in the power cable, key, and a 40 - or 80 -meter crystal. Switch the bandswitch to the band the crystal operates in. Remove the 807 and turn on the power supply. After the tubes have had time to warm up, key the transmitter and listen for the oscillator signal with a shortwave receiver. If nothing is heard, check the oscillator wiring and try a smaller value for C2.

If the oscillator is working, turn off the power supply and insert the 807 . If the power supply does not have a bleeder resistor, short the B-plus to ground before replacing the 807 or handling the chassis to avoid shock. Connect a 60 -watt light bulb to the antenna terminals and again turn on the power. Place C 7 at about half scale and rotate C 6 while holding the key down.


> Antenna recommended for use with novice transmitter. Should be as high and clear of obstacles as possible. Solder inner conductor of coax cable to one side of center insulator, and outer conductor to other side. Tape cable to insulator to relieve strain on soldered joints. Ground outer conductor of cable at the transmitter.

With C6 at about half scale, the indicator lamp and the 60 -watt lamp will show some sign of output. Adjust C6 and C7 until the indicator lamp (La) glows brightest. Check the plate of the 807 ; if it is red, replace C3 with a 50 mmfd capacitor. This will increase the drive from the 655 and allow the final tube to run cool.

If available, a grid-dip meter (or an absorption frequency meter) should be used to check the transmitter's frequency and harmonic output at twice the crystal frequency, and to note the keying characteristics. If carefully constructed, the rig will be clean.

After the transmitter has been tested, place it in the cabinet. Before doing this, however, drill a number of $1 / 2-\mathrm{in}$. holes in the rear of the cabinet and directly above the 807 tube location for ventilation. Then cement a piece of thin Bakelite plastic or three or four layers of "Saran Wrap" to the bottom of the cabinet to insulate the screw heads and 6J5 socket lugs from the cabinet's metal bottom. Secure the unit in the cabinet with two small wood screws on the underside which fasten into the Masonite chassis. Cement rubber feet on the cabinet to avoid scratching surface on which unit stands.

The transmitter will work with most types of popular amateur antennas. We had good results with the antenna rig shown in Fig. 5. The ground lead of the antenna connection should be connected to a good ground. Capacitors C6 and C7 are adjusted until the indicator glows brightest. At this point the transmitter is loaded, and with a good antenna, is capable of working just about any station within range that can be heard on either 80 or 40 meters.
On 80 meters, the daytime range is $50-75$ miles and night range is $800-900$ miles with 40 to 75 watts input. On 40 meters, with the same input, daytime range is about 200 miles, night range is several thousand miles.

# Ampiliticetion <br> Ampriccutiop Ampitiction Amplification 

The simple "control-impedance" principle explains this vital, modern process

By C. F. ROCKEY

NOT all amplification is electronic. Fundamentally, amplification is any process in which a great amount of power is controlled by a lesser amount. The throttle valve of an automobile, through which the full power of a several hundred $h p$ engine is controlled by the touch of a toe, is a crude amplification system.
Because electronic amplification first found wide use in radio, however, this process is firmly linked with electronics in most peopel's minds. Although technicians frequently speak of "current amplication" or "voltage gain," the most fundamental form of amplification is power amplification:

$$
\text { Power Amplification }=\frac{\text { Power Output }}{\text { Power Input }}
$$

Power Output refers to the large amount of power being controlled; Power Input, the much smaller amount of power that does the controlling. Often, in industrial usage, the power input may be called the "control signal." Both quantities in the fraction may be in ergs per second, joules per second, kilocalories per second, horsepower, or other power units, but watts or kilowatts are most widely used in electrical systems. Since both numerator and denominator must be expressed in the same units, it is seen that power amplification is a dimensionless, "pure ratio," without units in itself.

Power amplification is considered most fundamental here because neither current nor voltage amplification can occur without the simultaneous occurrence of power amplification. This is the case in the vacuum tube, the transistor, the magnetic amplifier, and all other true amplifying devices used today. For instance, although a transformer can readily step up electrical voltage, it does so at the expense of a proportionately decreased amount of available current. Therefore the power available for exerting any useful func-


tion has not been increased, and in practice it is usually decreased slightly. Thus a transformer, in itself, is not an amplifier.

The basis of all amplification is control. No amplifier generates power, it merely makes it possible for a small amount to control a large amount. Thus the essence of an amplifier is what engineers call a control impedance, a device whose ability to pass electric current is at the direct command of a small control signal--a relatively small electrical current or voltage. In Fig. 1 the input control signal is shown as an alternating voltage generator and the supply voltage as a direct-current source, but this is by no means always the case. Amplifiers may be made to work with either ac or $d c$ signals or supply sources. All that is needed fundamentally is an input or control signal, a control impedance, a relatively large power source, and a load. The load (represented in Fig. 1 as a resistor) may be an electric motor, solenoid coil, transformer, lighting circuit, loudspeaker, radio transmitting antenna, heating coil, or any other device capable of applying electrical power to a useful function.

The high-energy source in the output circuit of an amplifier causes a steady current to flow through the control impedance and load, normally, even when no control signal exists at the input terminals. When the input control signal, either voltage or current as the case may be, increases, it decreases the opposition which the control impedance offers to the flow of current from the highenergy source, and more current flows through it and the load. The load then consumes more power, normally, in proportion to the input signal. If the control signal decreases to zero, the current supplied to the load decreases to its resting value.

Now, should the control signal reverse in

polarity, it will increase the opposition to current flow in the load circuit, causing the load to consume less than the resting current value. The control signal at the input terminals directly regulates the internal opposition to current flow by the control impedance. Since the power supplied to the load is the product of the current flowing through it times the voltage across it, changing its current supply directly affects the power consumed by the load. And because the load current is a function of the input control signal's intensity and polarity, power amplification is the result.
The control characteristic is a graph (or curve, as engineers call it) relating output or load current to input signal magnitude. AIthough the control characteristic of tubes, transistors, or magnetic amplifiers may be quite irregular in practice, it is represented in Fig. 2 as a smooth, gradually curving line. The output current magnitude is found on the vertical, the control signal magnitude on the horizontal line.
To show how an engineer uses the control characteristic to predict the behavior of a control impedance as an amplifying device, a hypothetical alternating-control signal is projected in Fig. 3 upon the characteristic curve's horizontal axis.
Note in Fig. 3 that there is a specific value of load current for each instantaneous value of control signal magnitude. Thus the output or load current is under constant, direct control by the input signal. And, since the output or load power may be large in comparison with the input signal (sometimes several hundred times larger), we have true amplifying action.
The exact shape of the control characteristic may be of the utmost importance to the engineer. For instance, where voice, television, or music signals are being amplified, it is essential that this curve be a nearly straight line. Otherwise, the output current will not resemble the input signal, it will be
distorted. In certain scientific or industrial applications, accurate reproduction of the input signal by the output current is not necessary, and more efficiency can be secured by purposely distorting it. Then a highly curved control characteristic is advantageous. Other problems, such as feedback from the output to the input of the system may sometimes arise to complicate the designer's plans for a successful amplifier.
The earliest, highly successful control impedance applied to electrical amplificationthe device still called "the king of amplifiers" -is the three-element vacuum tube. First made for "wireless detection" by Dr. Lee DeForest in the early 1900 's, the vacuum tube was the amplifier until 1947 .
The triode vacuum tube consists first of all of a bulb full of nothing; that is, an evacuated envelope. Placed within this envelope is an electrically heated wire or metal tube called the cathode. When heated to a red, or higher temperature, the cathode boils off millions of negatively charged electrons. Surrounding the cathode is a spiral of wire called the grid. Finally a (frequently) cylindrical electrode, called the plate is mounted coaxially with the cathode and grid, and outward from the latter, as shown in Fig. 4.
Vacuum tubes of myriad shapes and sizes have been made and used since about 1908, but the one diagrammed in Fig. 4 illustrates the principle as well as any. The connections of a basic triode vacuum-tube amplifier circuit are diagrammed in standard schematic symbols in Fig. 5. For simplicity, batteries are shown as the dc supply sources, but they are seldom used in modern practice. Instead, an electronic power supply, operating from the commercial power line is most often substituted. Basic principles remain the same.
When the cathode of the vacuum tube is heated, clouds of electrons collect about it. When a positive potential (positive with respect to the cathode) is placed upon the plate, the negatively charged electrons are attracted to it, and current flows between cathode and plate, around through the load and plate battery and back to the cathode. These electrons must, however, pass between the wires of the grid enroute to the plate.
Normally, the grid is connected to a slightly negative $d c$ potential, and this causes it


## THE HYBRID COIL

One most interesting modification of the amplifier exists. Although it is an old idea, comparatively few people are aware of it.

As everyone knows, telephone signals lose their "kick" rapidly as they travel down the line. After traversing about 30 miles of ordinary cable pair, the voice signals have been reduced to one-thousandth of their original strength. Thus, amplification becomes necessary to longdistance telephony.

But the telephone is a two-way device. Mrs. Smith in Boston wants both to talk and to listen to Mrs. Brown in San Francisco. In fact, both ladies are often talking at the same time. How can we arrange a two-way amplifier that will amplify the signals equally well in both directions without complex switching, and without getting the signals mixed up?
The answer lies in a special kind of transformer called a hybrid coil (see Fig. A). Two identical, carefully balanced coils, the line coils, are connected in series with the two wires of the line. A third winding, the output coil, is arranged to couple its magnetic field equally into both of the line coils. The output coil is connected to the output terminals of the amplifying device, which may be either a vacuum-tube or a transistor. The input terminals of the amplifier are connected to the two centertaps of the two line coils (see Fig. B).
The two line coils have small resistance, about that of a mile or two of line, so the signal can pass through them with little loss. And since the input of the amplifier is connected to the two center taps, it is effectively connected across the line. Thus the voice signals from either Mrs. Brown's or Mrs. Smith's phone will be fed equally well into the amplifier.

These signals act to vary the battery current in the output circuit via the control impedance. Therefore, a greatly enlarged replica of either or both voice currents flows through the output winding of the hybrid coil. These strong voice currents cause a changing magnetic flux to pass through both line coils in the right direction,


A
GENERAL ARRANGEMENT OF A HYBRID COIL

thus inducing a large voice voltage back into the line. This greatly-amplified signal propagates down the line in both directions, giving both parties the benefit of the boost.

Because the input of the amplifier is connected to the exact center of each of the coils, and since half of the signal is sent each way down the line, the amplifier's output voltage is cancelled out at its own input terminals. Thus, when things are adjusted properly, the voice signals may be amplified many times without annoying "singing," or feedback.
to have a definite repulsive effect upon the electrons. The control-signal voltage source is connected in series with the grid battery so that its variations will add to and subtract from the negative, fixed grid voltage. Thus the signal voltage will make the grid instantaneously more or less negative with respect to the cathode. When the grid becomes less negative, it repels the electrons less strongly, and the cathode-plate-load current increases. When the signal makes the grid more negative, it repels more electrons, reducing the load current. Thus the triode vacuum tube acts as a control impedance whose internal opposition to load current flow is at the command of the grid voltage.

Like all practical devices, the vacuum tube can develop "indigestion" which interferes with its action under some circumstances. To avoid this, more grids have been added which, when properly connected, vastly improve its universality. Also, vacuum tubes ranging from pea-size (for hearing-aids and microwave use) to 100 -kilowatt giants have been built and are in use as amplifiers on all sorts of jobs today. They're made of metal, glass and special ceramics. Vacuum tubes are shot into outer space on satellites, and are operating miles beneath the surface of the ocean as
transoceanic cable amplifiers. They work.
The Transistor. In 1947, after countless hours of cogitation upon solid-state physies, quantum mechanics, statistical theory, and (possibly) voodoo, Drs. Bardeen and Brattain, of the Bell Telephone Laboratories brought forth a remarkable new control impedance called the transistor. Unlike the vacuum tube, the transistor makes use of conduction through a special kind of solid substance called a semiconductor instead of through a vacuum. The stuff most of the practical ones are made of today is element No. 32, germanium, an element recovered as a by-product from the combustion of certain coals.

When it's pure, germanium is an almost perfect insulator. But when the minutest whiff of indium, arsenic, gallium, aluminum, or certain other elements are added, it becomes a semiconductor. By adding the right stuff, in the right amount, one may make at will two different types of semi-conducting germanium, either N-type, or P-type. An N-type germanium conducts practically like copper does, that is, by means of free electrons which may move about inside the crystal. The P-type, however, is missing a few electrons which it should normally contain. These missing electrons, called holes, can

move around inside the crystal and conduct electricity too. However, since they're "missing electrons," they're positively charged particles and move in the opposite direction through the system. But they still conduct, nevertheless.
The art of semiconductor fabrication has advanced so far as to allow different zones of the same chunk of germanium to be made into either $N$ - or P-type material. In fact, such technique is necessary in the routine fabrication of a modern transistor. A modern "junction" transistor, the presently most common and practical type is made of a small bar of germanium about $1 / 8 \mathrm{in}$. long and about $1 / 16$ in. square. This little bar is divided into three alternate zones of P - and N-type material. The finished bar is sealed in a neat case, for convenience and security.

As Figs. 6A and 6B show, two types of junction transistors are thus possible-PNP and NPN. Both operate upon the same basic theory, the main difference being in the polarity of the supply voltages.

Fundamentally, in schematic terms, an NPN transistor is connected into its most generally practical amplifier circuit in the manner shown in Fig. 6C. The magnitude of the voltages and current shown apply to the typical experimenter's transistor. Power transistors are made which are capable of dealing with much greater voltages and currents when necessary.

Connections made to the ends of the bar of N-type germanium are designated the emitter and the collector, while the thin layer of P-type material in the center of the bar is called the base. In normal operation an electron current of about one milliampere flows from the grounded side of the supply battery into the emitter end of the transistor and up toward the base. Here, within the transistor, it divides, about $95 \%$ of it flowing through the entire bar and into the load through the collector connection. The remaining $5 \%$ flows out of the base connection, through the base resistor, and back to the positive terminal of the battery. This is the resting state of the circuit.
When the control signal source is ener-
gized, it causes an alternating signal current to flow between the base and emitter connections of the transistor. We recall that an alternating current can flow readily through the coupling capacitor, but that this capacitor acts as an open circuit for unvarying, dc battery current. Thus the capacitor prevents the generator from short-circuiting the base resistor, while allowing the ac control signal current to flow with relative ease.
From one point of view, we may think of the base section acting something like a semi-permeable wall, allowing electrons to pass through it in proportion to the base-emitter current. When the signal source current acts in such a direction as to add to the steady base current, its permeability is increased, and more current can flow from the emitter to the collector through the load. On the other hand, when the signal current subtracts from the battery current from base to emitter, base permeability decreases, the collector-load current is forced to decrease in proportion. Thus the load current is at the direct control of the base current from the signal source; the transistor, like the vacuum tube, acts as a true control impedance. And since the magnitude of the base signal current change is always much less than the corresponding load current change, transistors are effective amplifiers.

It is most important to observe here that, while the vacuum tube and the transistors are both control impedances, and thus amplifiers, they differ drastically in one important operational aspect. Whereas the vacuum tube is a voltage-controlled impedance, the transistor is a current-controlled device. Thus, while these two devices may often do similar jobs, they are by no means interchangeable, either in theory or in practice.
Both the vacuum-tube and the transistor have particular amplifying jobs to do at which each excels. At present, high-quality vacuum tubes are relatively inexpensive, easy to manufacture on a mass scale uniformly, and operate well when the control signal changes rapidly with time, that is, at high frequencies. On the other hand they are relatively bulky, mechanically fragile, and require excessive operating power in the form of cathode-heating requirements.

The transistor is exceedingly compact, operates well with a low-voltage supply source, requires no heating power, and laughs at mechanical shock that would shatter a vacuum tube. But, transistors are exceedingly difficult to manufacture to within close tolerances. Every production run includes a high precentage of rejects which do not meet government and commercial standards. (These culls are what you and I buy for experimenter's projects today, unless we pay over $\$ 5$ per unit.) Furthermore, transistors are extremely subject to quick and fatal elec-
trical damage if wrongly connected or allowed to become too warm. Truly effective high-power or high-frequency transistors remain extremely expensive, if indeed they are available to ordinary mortals at all, while vacuum tubes capable of supplying hundreds of watts at hundreds of megacycles may be bought over the counter for a few dollars almost anywhere.

Magnetic Amplifiers: While the vacuumtube or transistor is still necessary for amplification of signals which change magnitude appreciably in less than one-thousandth of a second, slower signals may be effectively handled by the magnetic amplifier.

This interesting device depends for its operation upon the fact that an iron-alloy core, similar to that used in transformers, can, so to speak, pass only a limited number of mag-


BASIC ARRANGEMENT OF SIMPLE MAGNETIC AMPLIFIER
netic force (flux) lines per square-inch of cross-section area. When such a core has been filled with magnetic flux it becomes very difficult to force any more to pass through it.
The heavy alternating current to the load is made to pass through the load winding (see Fig 7), while a small, possibly slowly changing unidirectional (dc) control current passes through the control windings. Because the two control windings consist of the same number of turns effectively wound in opposite directions, the heavy load current induces equal but opposite voltages into each winding, which thus effectively cancel-out in the control circuit. By this means, effective electrical isolation is maintained between control and load circuits. On the other hand, the control currents may still magnetize the core, and exert control action.

A more easily understood schematic diagram of a simple magnetic amplifier circuit is shown in Fig. 8. Assume that the control resistor is of such high resistance that negligible current flows through the control winding. The ac load current then flows through the load winding, developing a large and constantly changing magnetic field within the iron core. This continually changing magnetic field induces an opposing ac voltage back into the turns of the load winding. This opposing, self-induced voltage subtracts from the ac generator voltage, thus, reducing the

current in the load circuit to a small number of amperes. In other words, the load winding acts as an efficient "choke coil" in the ac load circuit, opposing the flow of current therein.

But now let us pass a small current through the control windings. This current now adds a second set of magnetic flux lines to those present due to the load current. But, as we have just said, the iron core can only contain a certain maximum number of total magnetic lines. Since an appreciable amount of the core's magnetic capacity is now being used by the dc control flux, the ac load current can no longer produce as great a changing field within the core as formerly. Since the opposing voltage induced with in the load winding is directly proportional to its own changing field, and this must be appreciably less than formerly, the load winding's "choking" effect is less, allowing more load current to flow.
Increasing the steady current further leaves still less "space" within the core for the changing flux about the load coil, so the choking-effect of the latter is reduced still further. Finally, we may increase the control winding current to the point where it almost fills, or "saturates" the iron core. Then, even though the ac load current is still changing as rapidly as before, it can produce little or no changing flux within the coil.
Thus we see that the magnetic amplifier is really nothing but a variable choke coil, whose current-opposing effect is at the direct control of a small direct current in the control windings. Though relatively slow in response, it is a powerful amplifier, finding much use in multi-kilowatt applications. By its use, thousands of horsepower involved in the rolling-mills of a large steel plant may be perfectly synchronized and controlled in an automatized steel-plate production system.

Of course, numerous improvements are possible, and are frequently applied in magnetic amplifier practice. By inserting a rectifier, or electrical "one-way valve" between the control source and the control windings, a magnetic amplifier may be made to amplify low-frequency ac control signals. Also, a feedback circuit by which some of the output power is reapplied to the input circuit, may improve the action and response-speed of the device. Where its inherent slowness is not a disadvantage, the magnetic amplifier is certain to find increasingly wider use, since it is the simplest, longest-lived (practically immortal), most rugged high-powered amplifier we have available at present.


## WRIST RADIO



Left, the versatile curl clip is fastened to the case with screw and washer. Holes in end of case are for phone clips and antenna coil. Above, underside of chassis. Virtually all wiring is done with pigtail leads of circuit components.
lighter, than a diminutive hearing aid whose manufacturer advertises his unit as tiny enough to be hidden in milady's hair. Only slightly larger than a book of paper matches, it still has up to twice the volume and selectivity of ordinary transistor or transistordiode circuits.

In spite of its tiny dimensions, all parts for the set are readily available. The polystyrene plastic case you'll find on the "Cosmetics" counters of any dime store. There also you'll find the versatile clip which attaches to the case. The trade name is "Lady Ellen Curl Clips." Get the $17 / 8-\mathrm{in}$. size.
For the chassis, we used a $17 / 16 \times 115 / 16 \mathrm{in}$. piece of linen impregnated Bakelite. Thin fiber or cardboard can also be used. Lay out and punch the $1 / 16$ in. holes (Fig. 2A) with a paper punch and pierce the $1 / 32$ in. holes for diode and transistor with a needle. If you use cardboard for the chassis, dip it in shellac, remove and allow to dry after making mounting holes. Repeat if necessary to give the cardboard the stiffness that fiber or Bakelite has.
Insert the germanium diode and transistor "pigtail" leads into their mounting holes and bend to right angles on the underside of the chassis (Fig. 3). This gives rigidity to circuit components without resorting to ultra-miniature clips and sockets.

Make the battery clips from strips of brass, copper or tinplate as in Fig. 2B. To hold the brass cap end of the battery securely, dent or dimple one of the clips with a $1 / 8$-in. flat punch, or

machine screw. To prevent the smooth, zinc shell end of the battery from sliding out of position, pierce the other clip with a prick punch or nail. Fasten the battery clips to the chassis with $2-56$ machine screws and nuts not more than $1 / 8$ in. long and the phone clips with $2-56$ screws.

The set uses either standard-size or hearing-aid-size magnetic phones. Standard-size phones have cords fitted with tips, but with the miniature phone you'll have to add them. To do this, carefully remove about $1 / 4 \mathrm{in}$. of the insulation from the cord to expose its tinsel conductors. Then place a common pin parallel with the tinsel conductors, and bind pin and tinsel together with a single strand of ordinary stranded fixture wire, snip off the protruding end of the pin and solder.

Suppose you use standard-size phones-then what about the jacks we used? Well, these are nothing more than the pin clips used in cheap octal wafer tube sockets. A $5 \phi$ socket yields 8 of them if you don't have an old socket from which you can salvage the 3 used in this project. If your standard-size phone tips don't fit, simply compress the clips with a pliers until they do.

Except for the coil connections, wire all components on the underside of the chassis with the transistor and diode pigtail leads (Fig. 3); separate hook-up wire is not required. When soldering to the screw terminal points, use a thumbnail-size wad of wet cleansing tissue pressed over the pigtail lead so that heat is not


Set with case open. It measures only $21 / 8 \times 13 / 4 \times 7 / 8 \mathrm{in}$.
transmitted up into the diode or transistor. Just as soon as the solder sets, move the wad over the hot connection so that it will cool rapidly. This protects transistor and diode from damage. Electrical connections are shown in Fig. 4; physical connections, in Fig. 5.

In order to provide the most efficient match between the high-impedance resonant circuit of coil and capacitor and the low-impedance diode detector-which, in turn, feeds into the low impedance transistor-the ferrite slug-tuned antenna coil is tapped 16 turns from the outside end of the winding. Using the coil shown in Fig. 3, which has a progressive type winding, you needn't count off turns; just unwind 21 inches of wire. This is equal to 16 turns. Carefully scrape off the cotton insulation and form a small loop, then rewind the coil wire as closely as possible into its original space and pie-layer arrangement and reconnect the end of the coil to the terminal lug. No great harm will result,
however, if you "scramble wind" the turns back on the coil form.

With two short lengths of light stranded, plas-tic-covered hook-up wire, connect one coil lug and the tap to chassis components. With a third length, connect the inside coil lug to another octal socket clip. This is the antenna connection. A 3 ft . length of wire fitted with a small alligator clip and brass weatherstrip nail or phone tip attaches to it. Removed from the set when not in use, this type of antenna eliminates dangling wires.
A fixed ceramic capacitor connected across the coil lugs completes the wiring. Its value will depend upon stations operating in your area. If stations tune in between 1590 and 880 kc ., the value of the capacitor should be about 120 mmf . To tune from 880 kc . to the top of the dial, 550 kc., use 220 mmf . Solder a $4-40$ brass nut to the end of the threaded coil slug, or a small bakelite knob with a $4-40$ lock nut, to turn the coil's tuning slug in and out.
When testing the set before installing in its case, attach the alligator clip to the finger stop or metal box of your telephone. If wiring is correct, and the correct size capacitor for your area is across the coil, you may find that powerful local stations are so loud that the earphone is overloaded and reception distorted. If this happens, remove the alligator clip from the phone. The volume will still be loud, but the set will be free of distortion-and quite selective.

Try the antenna clip on metal lamp bases, screens, bedsprings, etc., but you will probably find you can let it hang free and still get good reception.

With the set tested, it's ready for mounting in the case. Drill two $1 / 8$-in. holes for the phone clips and a $5 / 16-\mathrm{in}$. hole for mounting the tuning coil (Fig. 1). Drill a $1 / 1 n-\mathrm{in}$. hole in the back of the case for securing the curl clip and slip a $3 / 16$-in. dia. washer over a $2-56$ screw and clamp the clip between washer and case. The chassis with its wiring friction-fits in the case.

The antenna lead passes through a niche filed between case lid and cover. (Fig. 6.) When not in use, it's tucked inside. Since the case is transparent, a snapshot, colorful floral print or decal can be inserted under the lid when the set is used as a Pendant Radio. There is a $1 / 8-\mathrm{in}$. hole in the curl clip to which either a ribbon or chain may be attached. As a Wrist Radio, a plain leather strap is all that is required-the set clips to the strap-and as a Clip-On Radio, it clips to tie, shirt pocket, belt.

We've obtained fair results with an aluminum-foil-lined hat as a walking antenna, receiving 50 kw. stations located 20 airline miles away. For so tiny a receiver, mobility is asking a lot, but in many areas this stunt is possible. Note that no ground connection is required for normal reception. In remote areas, of course, a ground may be connected to the battery's minus ter-minal.-Thomas A. Blanchard.


I don't object to your doing-it-yourself-but I do draw the line at growing your own needles!

# Code Practice Oscillators 

## The article describes two code practice oscil-

 lator kits that are easy to build, instructive, and inexpensiveCODE practice oscillators are comparatively simple electronic devices. The simplest use only a single transistor or tube. The output is an audible tone, generally between 400 and 2,000 cycles per second, which the user can hear in an earphone.
The Lafayette KT-72 kit is available for $\$ 2.99$ from Lafayette Radio, 165-08 Liberty Avenue, Jamaica 33, New York. It comes complete with key, but the headphone must be bought separately. The Knight 83 Y239 kit is available from Allied Radio, 100 N. Western Avenue, Chicago 80, Illinois, for $\$ 3.95$. The key and the headphone are not included in the kit and cost $\$ 3.33$ more.

Theory. A small signal voltage at the input to the base of the first transistor shown in Fig. 2 will produce a larger signal at the second transistor (TR2) output. Now even if there's no signal at the input of the amplifier, there's still a very small signal at the first transistor collector made up of noise generated within the transistor and the circuit components. This noise is amplified by the second transistor.

If we were to feed the output of this amplifier back to its input (through a resistance to keep the low-impedance input from partially shorting the higher impedance output), this noise would pass through the amplifier. It would again appear at the output-amplified this time-and it would continue to recirculate in this way until it was prevented from becoming any louder by the value of battery voltage and the parts values employed in the circuit.

Did I intentionally use two transistors to illustrate this? Yes. The transistor circuit configuration used in the circuit of Fig. 2 is called a common emitter circuit because one battery terminal and one input terminal (indicated by the ground symbol) are connected to the emitter. The amplifier in Fig. 2 consists of two cascaded common emitter connected transistors.


The common emitter circuit configuration is more popular than the common collector and the common base circuits shown in Figs. 3A and 3 B because the common emitter circuit has greater power gain and because only one battery power supply is required to operate it. But the common emitter circuit inverts the signal (see Fig. 2). Thus, if we fed some of the output of a single transistor back to its input, the signal would subtract and cancel the tendency to oscillate. This type of feedback is described as degenerative.

However, if two of these transistor stages are cascaded, the signal will be inverted a second time, and when a portion of the output is fed to the input of this two-stage amplifier, the signals are in phase. This results in the build-up required for oscillation.
If a resonating circuit consisting of an inductance (a pair of headphones in the case of this code practice oscillator) and a suitable capacitance ac voltage divider combination for feedback is provided, one transistor will produce oscillations. In this case the LC (inductance and capacitor) combination tends to oscillate at a given frequency depending on the product of their values. But the internal dc resistance of the headphone windings dissipates energy, and the combination needs a recurring kick of energy--from some-where-for continued oscillation.


A single transistor can furnish the kick. This type of oscillator is generally known as a Colpitts oscillator, and this circuit is utilized in the Lafayette KT-72 code practice kit. The circuit is shown in Fig. 4.

The oscillator circuit of the Knight kit also utilizes a resonant LC circuit, but in this case, feedback is introduced with a transformer. The circuit is shown in Fig. 5.
The instructions which come with the Lafayette code practice oscillator kit include a step-by-step wiring sequence. Many of the connections are made without any soldering and rely instead on screws and nuts and Fahnestock clips.

The components are mounted on a perforated Masonite board before any wiring is attempted. The shaft for the volume control must be cut to about $3 / 8-\mathrm{in}$. length before it is inserted in the volume control. The $50-\mathrm{K}$ volume control is connected as a rheostat (only two terminals are used) instead of as a potentiometer (where three terminals would be used).

The Knight transistor code practice oscillator kit fits in a compact Bakelite case $15 / 8 \mathrm{x}$ $27 / 8 \times 4 \mathrm{in}$. with an aluminum front panel. It operates from a single $11 / 2$-v penlite cell. Terminals for connecting key and headphones are provided on the front panel.
The parts in both kits are covered by a




7
Front-panel view of the Knight Transistorized Code Practice Kit.
standard RETMA 90-day warranty. Any defective parts will be replaced within 90 days provided the damage was not due to carelessness or abuse. Each of the suppliers will troubleshoot your kit for a nominal cost if you can't make it work yourself, but the chance that you'll have trouble with either is very small.

Almost any kind of magnetic headphones of 1,000 ohms or greater impedance may be used with either oscillator. Lafayette recommends a single headphone which may be ordered from them as AM-15-1 at \$1.18. Allied recommends a unit which sells for $\$ 1.08$ ( 59 Y112, their catalog number). The key for the Knight Kit may be Allied's 76 PO53 at $\$ 2.25$ or Lafayette's MS-309 at \$1.25.
If you wish to use either code practice oscillator with another person, another key and headset may be added as shown in Fig. 6A. If you wish to get as many as four people into the circuit, connect the keys in parallel and the headphones in series-parallel as shown in

Fig. 6B. This kind of operation is a lot of fun and it will help you and your friends learn the code faster.

In comparing the two kits, I find it difficult to recommend one over the other. The Knight Kit is simpler to construct and can be built in less time. It is housed in a very attractiver functional package. The Lafayette Kit, on the other hand, is less expensive and it includes the key.-F.H.F.

## Soldering 'Pen" Absorbs Heat

- Soldering iron heat can ruin transistors and other small electronic parts, unless you use a heat sink. Pliers are often too bulky and heavy for the job, especially in the corners of chassis wiring, or working on minia-

turized circuits. Remove the ink cartridge from an old ball point pen, and saw off the tip about $1 / 2$-in. from the end. Then heat the back end of a Mueller \#88 test clip and force it into the pen handle. A drop of cement completes this handy tool.


## Draftsman's Tape Holds Tight

- Draftsman's tape makes an excellent "third hand" to hold electronic components together during assembly or soldering. Due to its high insulation, the tape can be left on permanently, or can be peeled off easily.
-J. A. McRoberts


# Adapter Unit Checks Tubes With Your Multimeter 



This adapter unit enables you to check tubes with your voltohmmeter, makes a fine filament source for experimental setups, and provides multi-ac taps for measurement and calibration work

Figure 2A shows the filament continuity test in schematic form. If a neon tube is connected to an appropriate voltage source, through a tube filament, it will glow brightly. If the filament is open, the neon tube will stay dark. Similarly, if any of the elements


Adapter unit at lefi above (and below) used with volt-ohmmeter for checking tubes.

## By TOM JASKI

THE most common and one of the simplest tube tests which can give reasonably reliable information about a vacuum tube is the emission test. Together with tests for continuity of the filament, shorts and opens of the elements, these are the tests that are made when you take your tube to a service shop for a free tube test, and these are also the tests which you perform on do-it-yourself tube testers. With the unit described here and with your volt-ohmmeter you can make these tests yourself.
are shorted, and the neon tube is connected through both of them to its source, it will glow again brightly (Fig. 2B). Usually we are interested in shorts to cathode, because they are the most commonly found shorts in tubes.

When a tube is in good condition, the cathode is capable of emitting all the electrons which can be demanded by plate and grid voltages. Actually, the cathode can deliver many more electrons, but there is a finite limit, the saturation current. When a vacuumtube cathode starts to deteriorate, the first indication is a drop in saturation current. Thus by testing what the saturation current is, we can pretty well determine the condition of the tube. We do this by tying the cathode to ground, heating the filament normally, and applying an ac voltage to all the other elements together. Then we measure the current through the tube, this is the emission test. (See Fig. 3.) Since this measured emission current is the total of that received by all of the elements, when we remove one of them from the circuit, there will be a slight drop in current. Not much, but enough to be perceptible and enough to indicate whether the element in question is open. The recommended maximum time to take a reading is three seconds.

Multimeter Requirements. The schematic is shown in Fig. 4. The transformer for the adapter unit is a tube checker transformer with many voltages tapped off. The tapped voltages are supplied to jacks. There are five jacks to a red lead; these supply ac to the elements of the tube under test. There are three black pin-jacks; these are grounded.

One of these must be used for one side of the filament, one for the cathode and one is a spare in case you want to ground the suppressor grid also. There are two jacks for the meter, one red for the positive prod, one black for the negative meter prod. The neon tube circuit was shown in Fig. 2. Each lead of the group of nine flexible black leads with phone tips on the ends is connected to a numbered pin on the tube test socket S. Lead one connects to all the \#1 pins, lead two to all the \#2 pins, etc. These are plugged into the appropriate jacks when you are using the unit.

The meter must have at least a $100 m a$ scale and preferably a higher one. If your multimeter does not have a scale as high as 100 $m a$, make a shunt to use with whatever scales you have. If you have only an ordinary 1 ma meter, you can use this provided you make a shunt for it which has a resistance of $1 / 99$ th of the meter internal resistance, for the 100 $m a$ range, or $1 / 19 s$ th for the $200 m a$ range. The reason your meter needs these high ranges is that the saturation current of cathodes is considerable, in some cases over 200 ma . (In regular emission tube checkers, this is com-

TABLE A

## EMISSION CURRENT AND TEST VOLTAGE OF REPRESENTATIVE TUBES

For other fubes, refer to tube manual. Similarity for emission test can be ludged from maximum dissipation, maximum plate current and voltage or max. cathode current.
(For dual tubes, the figures refer to each section separately with the other section unconnected.)

| Type | Test Voltage | Current (ma) |
| :---: | :---: | :---: |
| 5U4G | 70 | 180 |
| $5 Y 3$ | 70 | 60 |
| $5 Y 4$ | 70 | 65 |
| $5 \mathbf{8 3}$ | 70 | 70 |
| 6 6AGS | 25 | 65 |
| 6AH6 | 12 | 70 |
| 6 GK5 | 25 | 65 |
| 6 ALS | 12 | 50 |
| 6AQ5 | 35 | 80 |
| 6 6U6 | 12 | 60 |
| 6BA6 | 12 | 40 |
| 6BC5 | 12 | 70 |
| $6 \mathrm{C4}$ | 25 | 65 |
| 6.36 | 25 | 40 |
| 616 | 50 | 200 |
| $65 L 7$ | 25 | 50 |
| 65N7 | 25 | 75 |
| 6V6 | 35 | 90 |
| $6 \times 4$ | 50 | 100 |
| $6 \times 5$ | 30 | 90 |
| 12 AU7 | 25 | 75 |
| $12 \mathrm{AX7}$ | 25 | 50 |
| 125N7 | 25) | 80 |
| 2356 | 35 | 160 |
| 2325 | 35 | 150 |
| 2326 | 35 | 140 |
| 3516 | 25 | 140 |
| 35W4 | 25 | 140 |
| 3525 | 25 | 140 |
| 5085 | 35 | 160 |
| socs | 35 | 140 |
| 5016 | 25 | 180 |


pensated for by a dc voltage circuit which counteracts the deflection of the meter.)
Plug in the adapter unit, but do not yet turn it on. Find the base connections of the tube you wish to check from a tube manual. (Electronic supply stores have good tube manuals available for from 25¢ to 754.) Plug one of the filament terminals into a black pinjack, the other into the appropriate voltage jack. For split filament tubes, use the entire filament. For example a 12 AX 7 can be used on 6.3 and $12.6 v$, but in this case you would use the $12.6-v$ tap and apply it to either pin \#4 or pin \#5, with the other one connected to the ground jack. Next, determine what the cathode is. On 7-pin miniature tubes, for ex-

in Fig. 1; internal construction in Fig. 5. The flexible leads are anchored on the tie-point strips, so they won't pull out. You could solder them directly to one of the tube sockets, but then they must be made longer. There is nothing critical about the layout, just make sure the leads are long enough to reach all of the jacks. A bayonet type socket is included for testing pilot lamps. If you expect to check other types of tubes, with different bases, there is nothing to keep you from including as many different kinds as are avail-able-simply use a larger box.

The shorts and filament continuity tests have not been discussed in detail, but once you know how to set up a tube for the emission check, it is obvious from Figs. 2A and B what must be
ample, it will usually be either pin \#2 or \#7. Plug it into a black pin-jack. If the suppressor grid is internally tied to the cathode, ignore its pin \# lead. If it isn't, plug it into a red jack.

Now plug all the remaining element leads which are appropriate into red jacks. Of course on a 7 -pin tube you will have two unused leads. If a tube socket has no connection to, say, pin \#6, this lead will not be used. Hang the leads away from the box, in case there is an internal connection in the tube.
Insert the meter prods, and make sure the meter is at least on the $100-\mathrm{ma}$ range. Observe meter polarity. (Note that so far we have done nothing with the red lead which supplied ac to the red jacks.) Turn the unit on, and let the tube warm up for about a minute. Then select the proper ac voltage and plug in the red tip to that particular jack. In table A, a representative group of tube types are listed, together with the voltage which should be used to test them and the current the meter should read for a good tube. Tubes which belong to the same family can be found in your tube manual. For example a 12AY7 is tested with the same voltages as a 12AU7, draws a bit more current.

As soon as you plug in the red lead, read the meter and unplug it again. Don't leave the red lead connected any longer than necessary. If you don't want to plug and unplug a hot lead, build in a normally open "test" pushbutton so that this lead can be plugged in ahead of time and pushed on as needed.
If the tube reads the approximate current listed in Table A, or a value you calculate must be about right from similar tube listings, it passes the emission test. If it reads only $60 \%$ of these values, the tube is doubtful. If it reads only $50 \%$, reject the tube.

Construction. Front panel layout is shown
done for the others. Simply plug in the appropriate leads, one at a time on the shorts test. Don't be alarmed if the neon tube glows slightly when you test the cathode to filament short (which is done by simply plugging the cathode lead in the "short" jack). There is always some leakage between cathode and filament, and only if the tube lights up brightly should the tube be rejected.

|  | MATERIALS LIST-ADAPTER UNIT |
| :---: | :---: |
| No. Rea'd Description |  |
| 1 t | transformer (T1) Stancor P-1834-3-tube checker transformer (or equivalent) |
| 1 d | octal socket |
| 1 | 7-pin miniature socket |
| 1. | 9 -pin miniature socket |
| 21 | phone-tip jacks |
| 10 | phone tips |
| 1 | resistor, (R1) 10 ohms, 2 watts |
| 1 | resistor, (R2) $10,000 \mathrm{ohms}$, $1 / 2$ watt |
| 1 p | pilot lamp socket, bayonet type |
| 1 | NE2 neon lamp. |
| 1 d | DPST slide switch (S1) |
| 3 ft | grip-cap connector |
| 3 ft | extra flexible test lead |
| 25 | 5-point tie-point strips |
| 1 | $3 \times 4 \times 6^{\prime \prime}$ box |
| 1 h | hardware, wire and solder, decals pushbutton switch for "Test" (optional) |



Under-chassis view of adapter unit.

# One-String Electric Guitar 

## How one string and an earphone make music for you

BY ART TRAUFFER

MELLOW, rich and vibrant are the tones produced by this experimental unit. It can be built in an evening, and will play notes ranging through $11 / 2$ octaves.

Ordinarily, the magnets in an earphone cause the diaphragm to vibrate, making sound. This instrument uses the same principle in reverse: when the steel string (Fig. 1) vibrates, voltage induced in the coils produces a musical tone when fed through an amplifier. You can plug the unit into the phono jack of a radio, TV set, phono amplifier or tape recorder, and when you move the sliding block (Fig. 2), the pitch of the note varies as you pluck the string.

Cut a piece of straight $1 \times 2$-in. lumber about $28-\mathrm{in}$. long. Sand it perfectly smooth (the block must slide easily), and then give it two coats of varnish or shellac. About 1 in . from each end center the $11 / 4$-in. long rh wood screws. These screws allow for height adjustment and their slots support the string above the board.

You can use either a " $B$ " or " $E$ " steel string. Obtainable in any music store, these strings are the two highest pitched strings on a standard 6-string guitar. Usually they are


Connect the one string electric guitar to the phono plug of your amplifier, radio, TV set, or tape recorder. Be sure that your set is properly grounded for safety.
supplied with a loop or factory made collar at one end. Fasten this to one end of the board, with the nail and washer assembly shown in Fig. 2.

The tie post which holds the other end of the string is made of a roller window shade mounting bracket. Drill the center hole out to $1 / 4$ in., bend the bracket as in Fig. 2, and


| M/ | ATERIALS LIST-"ONE-STRING ELECTRONIC GUITAR" Description |
| :---: | :---: |
| 1 | $1 \times 2 \times 28^{\prime \prime}$ hardwood strip |
| 1 | $1 \times 3 / 4 \times 2^{\prime \prime}$ wood block |
| 1 | metal strip $1 / 2$ by $2^{\prime \prime}$ |
| 2 | $11 / 4^{\prime \prime} \times 8$ rh wood screws |
| 2 | $3 / 4^{\prime \prime} \times 5$ rh wood screws |
| 1 | 1/4-20 wing-nut |
| 1 | $1 / 4 \times 20 \times 1^{\prime \prime}$ brass bolt, hex-head |
| 1 | roller-shade bracket |
| 1 | $1^{\prime \prime}$ finishing nail, or th nail |
| 1 | $3 / 8{ }^{\prime \prime}$ dia. washer |
| 1 | high-impedance magnetic earphone ( $1,000-2,000$ ohm, higher ohmage preferred) |
| 5 ft | lamp cord, or shielded phono or mike cable |
| 1 | phono pin plug. |
| 1 | Gibson steel guitar string (E or B) |

mount it on the end of the board with two $3 / 4$-in. rh wood screws. Now drill a $1 / 16$-in. hole for the string through the head of a $1 / 4-20 \mathrm{x}$ 1-in. hex-head screw.
The pickup is made of a discarded earphone of high impedance, between 1,000 and 2,000 ohms dc resistance, and with magnet coils in good working condition. Remove the outside screw cap and the metal diaphragm disc. Then cement, or screw the phone onto the wood board about 5 -in. from one end. If your earphone has cord terminals on the back side, you may have to cut grooves in the board for the cord. This connecting cord can be made of ordinary lamp cord, with a phonopin plug soldered at one end. However, if you find later that there is objectionable hum pickup, you may have to substitute shielded phono or mike cable.

Make the sliding wood block 1 in. wide by $3 / 4 \mathrm{in}$. high and about 2 in . long. With a thinbladed hacksaw, cut the slot in the top to accept a thin strip of sheet metal.

Stretch the strings over the heads of the supporting screws, thread the end through the hole and twist the end securely. Turn the wing nut slowly until the string is taut enough to produce a medium pitch. For best results the space between the string and the tops of the magnets should be as small as possible, but not so the string hits the phone when it is plucked. Plug the phono tip into the jack of your hi-fi amplifier, a radio, TV or recorder. The instrument is now ready to play.

Safety note. In most types of ac-dc radios (having no power transformer), the chassis is hot and hence, if the power is not polarized, the string of the instrument could also be "hot," and serious electrical shock could result. Be cautious about using this instrument on, or near damp floors, or near radiators, etc., and if in doubt, have your phono input jacks checked for safety by a radio serviceman.

How It Works. In theory, this one-string "guitar" works like a musician's electric guitar with magnetic pickup. When the steel guitar string vibrates in the magnetic field of the earphone pole pieces, the string
cuts the lines of force between the poles and induces a small e.m.f. (electromotive force) in the coils. This e.m.f. is amplified by an audio amplifier, or by the audio section of a radio or TV, and then reproduced by a loudspeaker. The tone you hear depends on the rate of vibration of the string. A 1000 c.p.s. tone means that the string is vibrating 1000 times per second. The amplitude of the tone depends on the strength of the strings vibration, the gain of the audio amplifier, and on the spacing between the string and the magnets.


## Clamp Holds Wire for Soldering

- When tinning the tips of electric wires and soldering on lugs, use a large paper clamp to hold the wire still and keep it from rolling while you touch the iron and solder to the wire's tip.-Јонn A. Сомsтоск.


## Drilling Chassis Holes

- When drilling holes in the metal chassis of electronics gear, there's a good possibility that some of the metal chips will fall between contact points on the underside of
 the chassis and cause a short circuit. To prevent this, apply a wide strip of masking tape to the underside of chassis where the drill will come through, to catch and hold the chips. Once the hole has been drilled, remove the tape, being especially careful not to spill the metal chips.
SOLUTION TO
ELECTRON
TUBE
ANAGRAM
Page 130

SOLUTION TO ELECTRON TUBE ANAGRAM Page 130

The far-flung connections made by the connectors in the foreground of the photo at right are all brought into one plane for easy handling in the patchpanel. A patch plug and patch cord are shown plugged in to connect inputs of one unit to outputs of others. On the chassis, lettering stands for: R and L, stereo head; HI and LO MAG., AUX, TAPE IN, MIC., and TUNER, ferminations found on rear panel of a DB-1 10 amplifier; AM and FM are tuner outputs, as is RECORDER OUT; RECORD PICKUP jack connects to monaural dise head; AUXILIARY AMPLIFIER, HI and LO refer to inputs of a second amplifier for stereo; AUDIO INPUT FROM and AUDIO OUTPUT TO refer to color coding that simplifies making connections.

# Audio Patch-Panel 

Build this $\$ 10$ version of a broadcast station patchboard to broaden the use of your hi-fi components<br>BY DON SCHROEDER

EASY to wire in an evening, this audio patch panel will enable you to set up practically any combination of audio components without delay, and without fumbling for matched cords and connectors.
For many years, audio engineers have used patchboards to quickly connect combinations of equipment in broadcast stations, recording studios, and theatres. These panels offer not only convenience, but a complete variety of possible combinations. But the broadcaster has a great advantage over the hi-fi enthusiast in that most of his lines are low impedance and thus less vulnerable to screaming or hum.
This article describes an easily assembled high-impedance patch panel that will greatly facilitate the connection changes required for straight play-back of records, dubbing dises onto tapes, or any other connection it might be desirable to make. With it, all inputs become accessible in one location, eliminating the need to pull amplifiers off shelves or out of cabinets to get access to rear or underside terminals. It also simplifies the adapter fitting problem that plagues most audiophiles because all changes are made with RCA type plugs.

Construction. The patch panel shown in Fig. 1 was designed for use with a Bogen DB-110 amplifier. It therefore includes all those jacks that are present on the back of that model amplifier. It will probably be necessary to change these to suit your particular amplifier. The important thing to bear in


Interior wiring is not difficult and is further simplified by the use of double jacks. All shields are grounded in the box but only one is grounded at the plugs going to any one unit, to avoid ground loops and hum. Two pairs of jacks are connected together at the right. These take care of the tuners which usually come equipped with an output cord.


Two plugs are soldered together to make the patch cord (left), the inner connectors being joined with shielded wire. Note that only the right plug connects to the shield on the patch cord, the other end being insulated with tape to prevent ground loops. At right, patch plug.
mind is to keep those combinations most likely to be in constant use above and below each other. For instance, the magnetic input will
most often be connected to the magnetic other. For instance, the magnetic input will
most often be connected to the magnetic cartridge. Therefore those jacks representing
magnetic input and magnetic cartridge should cartridge. Therefore those jacks representing
magnetic input and magnetic cartridge should be vertically aligned. The same is true of a tape input and a tape output.
Double jacks are used to keep hole drilling
to a minimum, two less mounting screws being necessary. Handi-Grip plugs were used ing necessary. Handi-Grip plugs were used Several of these plugs were soldered directly together to provide easy vertical patching. Between patch and interconnecting cords a considerable amount of shielded wire stripconsiderable amount of shielded wire strip-
ping is required. For this I usually use a dull knife, a scriber, soldering aid, or nut pick, and a pair of scissors. Cut a ring around the outer jacket about 1 in . from the end and pull the piece of jacket off the wire. Now unravel the piece of jacket off the wire. Now unravel the
shield, pull the strands to one side, and twist them together. Where no termination is to be made to the shield, fan the wires and cut them off. Then wrap with two turns of any kind of tape. With as little pressure as possible cut a circle in the inner plastic insulation-no closer than $1 / 8 \mathrm{in}$. to the earlier cut-and pull
the plastic off the end. It is now possible to closer than $1 / 8 \mathrm{in}$. to the earlier cut-and pull
the plastic off the end. It is now possible to unravel the protective threads. Bend the
inner wires to one side. Then, gripping all unravel the protective threads. Bend the
inner wires to one side. Then, gripping all the threads, cut them off at the plastic.
Often in the course of soldering, an excess of heat melts the plastic insulation. Skill is the most effective means of avoiding this but the most effective means of avoiding this but ing iron is a great help. If you use a soldering


## MATERIALS LIST-PATCH PANEL

No. Reqd. 10

Handi-Grip pin plugs, solder type BA \#12A904. Mfg. by Workman TV
8 Double pin jack, BA \#12A676, Mfg. by H. H. Smith, \#1214
50 ft . microphone cable, Belden 8411, BA $\ddagger 2 \mathrm{Al} 102$
1 gray aluminum box, $8 \times 3 \times 23 / 4^{\prime \prime}, B A+\# 20 A 501$, LMB \#137
16 binder head screws and nuts $6-32 \times 3 / 8^{\prime \prime}$, BA \#19B863 and 19A1014
connectors to match inputs and outputs of existing components in system.
Suppliers parts numbers above are for Burstein-Applebee, 1012 McGee St., Kansas City, Mo.
gun, trigger it and allow it to get hot enough to melt solder before touching it to the wire. Simultaneously touching tip, wire, and solder together allows the rosin to run on the wire, giving maximum flux when it is needed. High heat, rapidly applied and quickly removed, does far less damage than prolonged heating at subsoldering temperature.

To minimize the danger of hum from ground loops, shields were connected only at one plug of all patch cords, the other end being carefully insulated with a piece of plastic tape. The same was true of lines running to the units when more than one line ran to the same unit. Only one of the wires going to the amplifier is grounded at both ends. Again these lines were carefully insulated with plastic tape against accidental grounding.

Generally a good rule of thumb with highimpedance lines is that they should not exceed 20 ft . in length. Actually, the shorter the better. If your equipment is spread around the walls of the room it might be wise to regroup it to keep line lengths to a minimum. Should hum occur it can sometimes be relieved by use of the larger Belden \#8401 shielded wire in place of the smaller Belden \#8411 specified in the Materials List.

Aside from the care required in grounding, construction is straightforward and no difticulty should be encountered. "Audio" Teknicals were used to put the finishing touch on the unit These are applied like any decal, wetting the surface to ease positioning. Careful blotting with a dry rag sets them in position. After at least 12 hours drying time the decal can be permanently attached by a very light brushing with clear "Cutex" nail polish.

If you have been having a battle keeping track of your audio terminations, try this unit. It pays big dividends in frustration reduction.

## Portable Raxio-Phonograph

> Here's a transistorized radio and phonograph turntable that operates off batteries. You can take it, and use it, anywhere

By HOMER L. DAVIDSON


Belting and catch on case are available in dime stores.


In the home, on the beach, in the air, overseas-wherever you happen to be or go, this radio-phono combination can go with you.

THE RF section of the radio circuit of this portable consists of three RF transistors and a fixed diode rectifier (see Fig. 3). Transistor TR1 is the oscillator mixer stage, TR2 and TR3 are IF amplifiers. The intermediate frequency is 445 kilocycles. This IF signal is rectified to audio frequency by the fixed crystal diode.

A $3 \times 11$-in. printed circuit board is used as a subchassis for the RF and audio circuit (see Fig. 5 for RF section

| MATERIALS LIST-PORTABLE RADIO-PHONOGRAPH |  |  |  |
| :---: | :---: | :---: | :---: |
| Desig. | Description | Desig. | Description |
| RF SECTION |  |  |  |
| C1, C2 | variable capacitor, RF section 6.3 to 123.1 | R3 | $330 \mathrm{ohm}, 1 / 2$ watt resistor |
|  | mmfd; osc. section 5.7 to 78.2 mfd | R4, R7, R8 | 4.7k ohm, $1 / 2$ watt resistor |
|  | Lafayette |  | 2700 ohm, |
| C3, C4, C6, C7, C8 C10, C11, C12 | . 01 mfd disc capacitors | $\mathrm{R}_{\mathrm{R}} 10$ | 33k ohm, $1 / 2$ watt resistor <br> ant. loop, 700 mh (Lafayette MS-264) |
|  | . 005 mfd disc capacitor | 12 | osc. coil (Lafayette MS-265 or equiv.) |
| C8 | $10 \mathrm{mfd} 25 \checkmark$ elec. capacitor | T1, T2 | Meisner 16-9002 455 kc IF transformer |
| C13 | 50 mfd 25 v elec. capacitor | T3 | Meisner 16-9014 455 kc output IF transformer |
| R1, R5, R6 | 100 k ohm, $1 / 2$ watt resistor | TR1, TR2, TR3 | Raytheon 2N414A transistors (PNP) |
| R2 | $1000 \mathrm{ohm}, 1 / 2$ watt resistor ${ }^{\text {a }}$ ( ${ }^{\text {diode }}$ |  | Raytheon 1N295 fixed diode |
|  |  |  | AR119 Argonne output transformer PRI 500 |
| C15 | .05 mfd 200 v paper capacitor |  | ohm C. T.; sec. 3.2 ohm |
| R10 | 10k volume control, with sw | SWI | SPST switch on rear of R10 |
| R11 | 470 k ohm, $1 / 2$ watt resistor | Batteries | 9 -volt (Eveready \#276 or equiv.) |
| R12 | 12 k ohm, $1 / 2$ watt resistor | Spk. jack | standard female phono jack |
| R13 | 3000 ohm, $1 / 2$ watt resistor | 1 | pickup arm and crystal (PK.89 phono arm |
| R14 | $680 \mathrm{hm}, 1 / 2$ watt resistor |  | and cartridge, Lafayette) 33 |
| R15, R16 | $10 \mathrm{ohm}, 1 / 2$ watt resistor | 1 | 6-volt phono motor, $45 \mathrm{rpm}, 331 / 3.16 \mathrm{ppm}$ |
| TR4 | 2N107 GE transistor (PNP) |  | (Lafayette) |
| TR5, TR6 | 2 N188 GE transistor (PNP) | SW2 | rotating DPDT switch |
| T4 | AR109 Argonne transformer driver PRI 10,000 ohm; sec. 2000 C.t. |  | 6 -volt hattery (Eveready \#409 or equiv.) |
|  | PRINTED | circuit |  |
| 1 pt . | PE.5 liquid etchant |  | PRLT ball point pen |
| 1 | XXXP copper laminated board ( $3 \times 11^{\prime \prime}$ cut from $12^{\prime \prime}$ piece) | 1 roll | tape resist |


and Fig. 6 for audio section portions of the PC board). The audio circuit consists of an audio amplifier with a volume control in the base circuit of TR4. The last two audio stages are operated push-pull for greater amplification. This little portable has two $5 \times 7-\mathrm{in}$. PM speakers in the output and pulls only 10 ma with full volume. A 6-v phono-motor is
switched into the phonograph circuit, with a separate battery for this circuit since the radio operates off $9 v$.

Printed Circuit. Wash the copper side of the PC board with soap and water, and then trace on it the RF and audio circuits through carbon paper. Unroll resist tape and apply, using a sharp pocket knife to cut all corners. Dots can be made with a ball-point resist paint by simply pressing down on the ball point of the pen.
When the circuits have been completely laid out on the printed board, pour enough etching solution into a tray to sufficiently cover the board. The solution should be agitated or rocked back and forth to quicken the etching process. It will take about one hour to complete the process. Wash the finished board in cold-running water, wash out the etching tray or dish, and pour the remaining solution back into the bottle. It can be used again. Remove the tape

and pen resist paint. Now drill all holes in the printed circuit board before mounting any parts. A very small drill should be used for all small parts such as resistor, capacitors, and transistor wires. The phono and speaker jackstake $3 / 8$-in. dia. holes. At the two ends of the printed circuit board drill $1 / 4-\mathrm{in}$. holes for mounting the PC board on the wooden cabinet.

Mounting Components. All the small parts are mounted as they are wired into the circuit. Wait until the last thing to solder the
 transistors into the circuit so that excessive heat on a given point will not ruin them. The variable capacitor and volume control are bolted to the printed chassis, as are the phono and speaker jacks. The small antenna is temporarily taped to the printed board while alignment and mounting is done (see Fig. 7). If you have a signal generator, you already know how to
do the IF and RF receiver alignment. (See "How To Align Superhet Circuits," p. 66, Ra-dia-TV Experimenter, No. 559, 75 from Science and Mechanics, 450 East Ohio Street, Chicago 11, Ill.) If not, the local radio and television shop can easily do a professional job of alignment of the small portable receiver.




Looking up into cabinet. Speakers mount at opposite ends of case.

Test the audio portion of the printed circuit board first. Do all alignment and testing of the chassis before it is mounted in the cabinet. Turn the switch on and the volume up half-way, and plug the crystal pickup arm into the audio phono jack. A noise should be heard. Rub your finger over the needle and a scratchy sound will be audible. The radio portion can be checked by simply turning the switch to the radio position, and aligning first the IF stages with a signal generator, then the RF section.

Cabinet Construction. After the receiver and phonograph printed circuit board has been thoroughly tested it is ready to be mounted into the cabinet. The cabinet can be made from $3 / 8-\mathrm{in}$. plywood. If you already have a case, be sure it is large enough to take both chassis and speakers.
The speakers mount at the ends of the cabinet (see Fig. 8). A piece of $1 / 4$-in. Masonite was cut and drilled for the top panel to

hold the record player and phono pickup arm, and another piece of $1 / 4-\mathrm{in}$. Masonite was cut and drilled for the bottom, as in Fig. 10.

Cover the cabinet with plastic grille cloth, stapling it to the case. Apply glue around the speaker holes before stapling. Both Masonite panels and the top phono-lid were sprayed with red enamel paint.

The small batteries were bracketed to the bottom Masonite panel. A small wooden block and No. 8 wire form a holder (see Fig. 9) to secure the phono arm to the cabinet when transporting this portable.

## Measuring the Conductivity of Liquids



Adding a teaspoonful of saturated solution common salt from beaker at left to test jar of water, upped voltmeter reading from 10 to 112.

SOIME liquids conduct electricity better than others. You can test this fact with the setup shown in Fig. 2. Two strips of sheet copper secured to the underside of a plastic disc are immersed in the liquid to be tested. A meter connected across the lamp terminals indicates voltage applied to the lamp.

With this setup, we fcund, for example, that the voltmeter registered 10 volts with pure water in the peanut butter jar. We then


Teaspoonful of saturated bicarbonate of soda resulted in a lighted lamp and 108 -volt reading.

added one teaspoonful of a saturated solution of common salt to the pure water (Fig. 1). The voltmeter reading jumped up to 112 volts, and the lamp burned brightly. No wonder medical technicians use salt-soaked pads when attaching various types of electrical equipment to the body!

Figure 3 shows an experiment using a teaspoonful of bicarbonate of soda from a saturated solution placed in a fresh jar of water. Here the voltmeter registers 108 volts, as against 112 for salt.

Figure 4 shows how a teaspoon of vinegar results in 58 volts to the lamp, indicating conductivity better than water but not nearly


## provides sharp, clear TV pictures on

 1, 2 or more TV sets with only 1 antenna'straight-thru' circuit provides up to 10 db gain as a powerful one-set booster
'couple-two' circuit provides up to 5 db gain (per set) as an amplified two-set coupler
'straight-thru' circuit and B-T 4-set coupler provide no-loss 4 -set distribution system

Employs new frame-grid tube 6DJ8, new circuitry to achieve highest signal gain and "lower-than-cascode" noise factor. Provides full broadband amplification covering low and high VHF channels. Features "NO-STRIP" 300 ohm terminals for positive, electrical connections in seconds. Has "on/off" switch.
Improve TV reception today on 1, 2 or more TV sets with a single antenna.

Available at parts distributors. For details write: BLONDER-TONGUE LABORATORIES, INC.

9 Alling Street, Dept. RX-60, Newark 2, N. J. In Canada: Telequipment Mfg. Co., Ltd., London, Ont. Export: Morhan Export Corp., N. Y. 13, N. Y. - hi-fi components \& UHF converters * master TV systems * industrial TV cameras * FM-AM radios


Teaspoonful of vinegar produced reading of 58 volts.
so high as either salt or soda.
For accurate comparisons, use the same quantity of each additive, e.g. a teaspoonful. You'll find salammoniac (ammonium chloride) similar to salt in conductivity. A few drops of dilute sulphuric acid (battery acid) will show a surprising degree of added conductivity to water.

Caution: Do not try any but aqua solutions -an inflammable liquid could easily be touched off in contact with the copper electrodes. Also, don't leave your test setup plugged in, or out where youngsters can poke around its live terminals under the plastic guard ring.-Harold P. Strand.

## Film Spools As Wire Stand-Offs



- Those plastic spools that 120 film comes wound around can be made into low-loss, nocost stand-off insulators for wires such as radio lead-in. Cut the spool in half, drill a hole through the inside and insert a long wood-screw. Wrap one turn of the wire around the insulator near the flange as shown.

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-fime could be included. Copyright $\mathbf{1 9 6 0}$ by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 450 East Ohio St., Chicago 11, III.

> QUICK REFERENCE INDEX
U.S. and Canadian AM Stations by Frequency ..... 161
U.S. and Canadian AM Stations by Location. ..... 170
United States FM Stations ..... 178
Canadian FM Stations. ..... 180
United States Television Stations ..... 180
Canadian Television Stations ..... 182
Werld-Wide Short-Wave Stations ..... 182
Canadian Short-Wave Stations. ..... 184

## U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P.r watt power; d-operates daytime only. Wave length is given in meters

Kc. Wave Length 540-555.5
CBK Regina, Sask. KVIP Redding, Calif.
KFMB San Diego, Calif. WGTO Cypress Gardens WDAK Columbus, Garida KBRV Soda Springs, Idaho KWMT Ft. Dodge, owa WDMV Pocomoke City, Md. WBIC Islip, N.Y.
WCNG Canonsburg, Pa. WDXN Clarksville, Tenn. WRIC Richlands, Va.
550-545.1
CFNB Fredericton, N.B.
CFBR Sudbury, Ont. CHLN Three Ŕivers, Que. CKPG Prince George, B.C. KENI Anchorage, Alas KOY Phoenix, Ariz. KAFY Bakersfield, Calif. KRAI Graig, Colo. WGGA Gainesville, Ga KFRM Concordia, Kansas WCBI Columbus, Miss. KSD St. Louis, Mo. KOPR Butte, Mont. WGR Buffalo, N.Y. WDBM Statesville, N.C. KFYR Bismarck. N.Dak. WKRC Cincinnati, Ohio KOAC Corvallis, Oreg. WHLM Bloomsburg, Pa. WPAB Ponee, P.R. WPAW Pawtuckot, R.I. KGRS Midland, Tex. KTSA San Antonio, Jex. WDEV Waterbury, Vt WSVA Harrisonburg, Va.

| W.P. | Kc. Wave Length WSAU Wausau, Wis. |
| :---: | :---: |
| 50000 | 560-535.4 |
| 1000 d | CFRA Ottawa, O |
| 5000 | CJKL Kirkland Lake, ont. |
| 50000d | CFOS Owen Sound, Ont. |
| 5000 | WOOF Dothan, Ala, |
| 500 d | KYUM Yuma, Ariz. |
| 1000d | KSFO San Fran., Calif. |
| 500 d | KLZ Denver, Colo. |
| 250 d | WQAM Miami, Fla. WIND Chicago, III. |
| 250 d | WIND Chicago, III. |
| 1000d | WGAN Portland, Maine |
|  | W HYN Springfield, Mass. |
|  | WMIC Monroe, Mich. |
| 50000 | WEBC Duluth, Minn. |
| 1000 | KMON Great Falls, Mont. |
| 5000 | WGAI Elizabeth City, N.C. |
| 250 | WFIL Philadelphia, Pa. |
| 5000 | WHBQ Memphis. Tenn. |
| 1000 | KFDM Beaumont, Tex. |
| 1000 | KPQ Wenatchee, Wash. |
| 5000 1000 | WJLS Beckley, W.Va, |
| 5000 d | $570-526.0$ |
| 1000 |  |
| 5000 | CKEK Crantrook, B.C. |
| 1000 5000 | CJEM Edmundston, N.B. |
| 500 d | WAAX Gadsden, Ala. |
| 5000 | KCNO Alturas, Calif. |
| 5000 | KLAC Los Angeles, Calif. WGMS Washington, D.C. |
| 5000 | WACL Waycross, Ga, |
| 5000 | WKYB Paducah, Ky. |
| 1000d | WVMI Biloxi, Miss. |
| 5000 | KGRT Las Cruces, N. Mex. |
| 5000 | WMCA New York, N.Y. |
| 5000 5000 | WSYR Syracuse, N.Y. |

5000 WWNC Ashevilie, N.C.

| W.P. | Kc. Wave Length |
| :---: | :---: |
| 5000 | WSHE Raloigh, N |
|  | WKBN Youngstown, Ohio |
|  | WNAX Yankton, S. Dak. |
|  | WFAA Dallas, Tex. |
| 5000 | WBAP Ft. Worth, Tex. |
| 5000 | KLUB Salt Lake City, Utah |
| 1000 | KYi Seattle, Wash. |
| 5000d | WMAM Marinette, Wis. |
| 1000 | 580-516.9 |
| 5000 5000 |  |
| 5000 | CJFX Antigonish, N.S. CKEY Toronto Ont. |
| 5000 | CKEY Toronto, Ont. CKPR Ft. William, Ont. |
| 5000 5000 | CKPR Ft. William, Ont. CKUA Edmonton, Alta. |
| 5004 5000 | CKY Winnipeg, Man. |
| 1000 | WABT Tuskegee, Ala. |
| 500 d | KTAN Tueson, Ariz. |
| 5000 | KMJ Fresno, Calif. |
| 5000 | KUBC Montrose, Colo. |
| 5000 | WDEO Orlando, Fla. |
| 1000 | WGAG Augusta, Ga. |
| 5000 | KFXD Nampa, Idaho |
| 5000 | WILL Urbana, III. |
| 5000 | KSAC Manhattan, Kans. |
| 5000 | WIBW Topeka, Kans. |
| 5000 | KALB Alexandria, La. |
| 5000 | WTAG Worcester, Mass, |
|  | WELO Tupelo, Miss. |
|  | WAGR Lumberton, ${ }_{\text {Na }}$ C. |
|  | WHP Harrisburg, Pa. |
| 1000 | WKAQ San Juan, P:R. |
| 1000 | KOBH Hot Springs, S.Dak. |
| 1000 | WRKH Rockwood, Tenn. |
| 5000 | KDAV Lubbock, Tex. |
| 1000 | WCHS Charleston, W.Va. |
| 5000 | WKTY LaCrosse, Wis. |
| 50000 | $590-508.2$ |
| 5000 1000 | CFAR Flinflon Man. |
| 1000 | CFAR Flinflon, Man. |
| 1000 d | CKAR Huntsvilie, Ont, |
| 1000 d | CKRS Jonquiere, Que. |
| 5000 | VOCM St. Johns, N.F. |
| 5000 5000 | WRAG Carrollton, Ala. KBHS Hot Springs, Ark |

5000 KBHS Hot Springs, Ark

| W.P. | Kc. Wave Length | W.P. |
| :---: | :---: | :---: |
| 500d | KFXM San Bernardino, Cal. | . 1000 |
| 5000 | KCSJ Paeblo, Colo. | 1000 |
| 5000 | WDLP Panama City, Fla. | 1000 |
| 5000 | WPLO Atlanta, Ga. | 5000 |
| 5000 | KGMB Honolulu, Hawali | 5000 |
| h 5000 | KID Idaho Falls, Idaho | 5000 |
| 5000 | WVLK Lexington, Ky. | 5000 |
| 250 | WEEI Boston, Mass. | 5000 |
|  | WKZO Kalamazoo, Mich. | 5000 |
|  | Wow Omaha, Nebr. | 5000 |
| 5000 | WROW Albany, N.Y. | 5000 |
| 5000 | WGTM Wilson, N.C. | 5000 |
| 5000 | KUGN Eugene, Oreg. | 5000 |
| 10000 | WARM Scranton, Pa. | 5000 |
| 50000 | WMBS Uniontown, Pa. | 1000 |
| 500d | KTBC Austin, TeX. | 5000 |
| 5000 | KSUB Cedar city, Utah | 1000 |
| 5000 | WLVA Lynchburg, Va. | 1000 |
| 5000 | KHQ Spokane, Wash. | 5000 |
| 5000 |  |  |
| 5000 | 600-499.7 |  |
| 5000 | CFCF Montreal. Que. | 5000 |
| 5000 | CFCH North Bay, Ont. | 1000 |
| 5000 | CFQC Saskatoon, Sask. | 5000 |
| 5000 | CJOR Vancouver, B.C. | 5000 |
| 5000 | CKCL Truro, N.S. ${ }_{\text {Wia }}$ | 1000 |
| 1000 | WIRB Enterprise, Ala | 1000 |
| 500 d | KCLS Flagstaff, Ariz. | 5000 |
| 5000 | KVCV Redding, Calif. | 1000 |
| 5000 | KFSD San Diego, Calif. | 5000 1090 |
| 5004 | WICC Bridgepert, Conn. | 1000 |
| 1000 d | WPDQ Jacksonville, Fla. | 5000 |
| $500 d$ | WMT Gedar Rapids, lowa | 5000 |
| 5000 | WYFE New Orleans, La. | $10000^{4}$ 5000 d |
| 5000 | WFST Caribou, Maine | $5000 \mathrm{~d}$ |
| , | WCAO Baltimore, Md. | 5000 |
|  | WLST Escanaba, Mich. | 1000 d |
| 1000 | WTAC Flint, Mieh. | 1000 |
| 1000 | KGEZ Kalispell, Mont. | 2000 |
| 1000 | WGVP Murphy, N.C. | 1000d |
| 10000 |  |  |
| $1000 d$ $5000 d$ | WHITE'S RADIO LOG | 161 |

Kc. Wave Length W.P. Kc. Wave Length WSIS Winston-Salem, N.C. 5000 WESC Greenville, S.C. KSJB Jamestown, N.D. 5000 KSKY Dallas, Tex: FFRM Coudersport, Pa WAEL Mayaguez, P.R. KROD El Paso, Tex. KERB Kermit, Tex.
KTBB Tyler, Tex.

## 610-491.5

CHNC New Carlisle, Que, AT Trail, B.C KKTB St Cathari Man WSGN Birmingham, Ala KAVL Lancaster, Calif. KFRE San Francisco, Calif. WDEB Pensacola FIa WCEH Hawkinsville, Ga. WRUS Russeliville, Ky. KDAF Kuluth, Minn. NDAF, Kansas City, Mo. KOJM Havre, Mon. WGIR Manehester, N.H. GGM Albuquerque, N. Mex. WAYS Charlotte, N.C. WTY N Columbus, Ohio IIT Houston Tex KlLT Houston, Tex. KVNU Logan, U tah WSES Roanoke, Va,

## 620-483.6

CFCL Timmins, Ont. CKCK Regina, Sask. GNGS Hanford, Ealif KSTR Grand Junction, Colo. WSUN St. Petershurg, Fla. WTRP LaGrange, Ga, KWAL Wallace, Idaho
KMNS Sioux City, lowa WTMT Louisville, Ky. WLBZ Bangor, Maine WIDX Jackson, Miss. WVNJ Newark, N.J. WHEN Syracuse, N.Y WDNC Durham, N.C. KGW Portland, Oreg. WHJB Greensburg, Pa. WCAY Cayce, S.C. KWFT Wioxville, Tenn. WCAX Burifington, Vt. Tex. WWNR Beckiey, wVa WTMI Milwaukeo, Wis.

## 630-475.9

CFCO Chatham, Ont. CFCY Charlottetown, P.E.I CKPC Winnipalis, ont. CKRC Winnipeg, Man. CKYL Peace River, Alta. WAVE Abertvilis, Ala KJO Juneaw Alas KVMA Main, Alaska KIDD Monterey, Galif. KHOW Denver, Colo. WRAL Washington, D.G. WSAV Savannah, Ga
KIDO Boise. KIDO Boise, Idaho WLAP Lexington, Ky. KTIB Thibodaux, La,
WJMS Ironwood, Mich. KDWB So. St. Paul, Minn KXOK St. Louis, Mo.
KGVW Belgrade, Mont KGVW Belgrade,
KOH Reno, Nev.
KLEA Lovington, N.Mex. WIRG Hickory. N.C. WMFD Wilmington, N.C. WEJL Seranton, Pa WPRO Providence. R.I. KGFX Pierre, S.Dak. KMAC San Antonio Tex KGDN Edmunds, Wash. KZUN Opportunity, Wash.
640-468.5
CBN St. John's, N.F. KFI Los Angeles, Calif. WOI Ames, Iowa
WHLO Akron, Ohio WNAD Norman, Okla.
650-461.3
KPOA Honolulu, Hawail WSM Nashville, Tenn.

660-454.3
KFAR Fairbanks, Alaska WNBC New York, N.Y.

1000 d

| 1000 |  |
| :--- | :--- |
| 5000 | $670-447.5$ |
| 5000 |  |
| WMAQ Chicago, III. |  |

## 1000 d <br> 1000 d 1000

 $680-440.9$CHFA Edmonton, Alta.
CHLO St. Thomas, Ont

CJOB Winnipeg, Man. 5000 CKGB Timmins, Ont. 1000 KNBC San Frani., Calif. 5000 WCTT Corbin, Ky. 5000 WCBM Baltimore, Md. | 1000 | WNAC Lawrence, Mass. |
| :--- | :--- |
| 5000 | WDBC Escanaba, Mich | 5000 KFEQ St. Joseph, Mo. 5000

500 d
WINR St. Joseph, Mo.

Winghamton, N.Y. 500d WINR Binghamton, N.Y. | 500 d | WRVM Rochester, N.Y. |
| :--- | :--- |
| 500 d | WPTF Raleigh, N.C. | WPTF Raleigh, N

WISR Butler, Pa.
WAPA San Juan, P.Rico. WMPS Memphis, Tenn. KENS San Antonio. Tex. KOMW Omak, Wash.

CBU Vancouver, B.C.
WVOK Birmingham, Ala.
KVNA Flagstaff, Ariz.
KEVT Tuesen, Ariz
KAP1 Pueblo, Colo.
10000 WADS Ansonia, Conn.
5000 WAPE Jacksonvilie, Fla.
5000 KULA Honolulu, Hawai
1000 KBL! Blackfoot, Idaho
KGGF Cofteyville, Kans
WTIX New Orieans, La
KSTL St. Louis, Mo.
KSTL St. Louis, Mo.
KRCO Prinevilie, Oreg.
KUSD Vermilion, S.
KHEY EI Paso, Tex.
KZEY Lamera, Tex
WCYB Bristol, Va.
WNNT Warsaw, Va.
700-428.3
WLW Cincinnati, Ohio
$710-422.3$
CJSP Leamington, Ont.
1000
5000
CFRG Gravelhourg, Sask.
WKRG Mobile, Ala.
KMPC Los Angeles, Calif.
1000
. 5
1000 KEEL Shreveport, La.
WHB Kansas City, Mo.
WOR New York. N.Y.
WZRH Manila, P.I.
WKJB Mayaguez, P. Bi
WTPR Paris, Tenn.
KGNC Amarillo, Tex.
KURV Edinburg, Tex.
WDSM Superior, Wis.
720-416.4
WGN Chicago, Ill.
730-410.7
CJNR Blind River, Ont.
CKAC Montreal, Que.
CKDM Dauphin, Man.
CKLG No. Vancouver, B.C.
KFQD Anchorage, Alaska
KFQD Anchorage, Ala
WJMW Athens, Ala.
WNMW Athens, Ala.
WKTG Thomasville, Ga.
KBLR Goodland, Kans.
WF MW Madisonville, Ky.
WMTC Vancleve, Ky.
5000
1000 d
W
WARB Covington, La.
WMMS Bath, Maine
WACE Chicopee, Mass.
KWRE Warrenton, Mo.
$5000 d$
1000
t000d
10000
50000
250d
10000
$500 d$
50000

10000
50d

10000
500 d
50000

## .

1000 d
$\qquad$ 1000d 1000 5000 500 d KWOA Worthingten, Minn WDOS Oneonta, N.Y.

| N.C. | $10000^{\circ}$ |
| :---: | :---: |
|  | $1000 d$ | WOHS Shelby, N.E. KBOY Medford Grees WNAK Nanticoke, Pa WP:T Pittsburgh, Pa

WLIL Lenoir, Tenn.
KKSN Grand Prairie KKSN Grand Prairie, Tex. WPIK Alexandria, $V$

50000
W.P.

## Kc.

 5000dCBL Toronto, Ont WBAM Montgomery, Ala. 500000 ( 5000 d
KUEQ Phoenix KUEQ Phoenix, Ariz. 1000 d . KBEA Avaion, Calif. $10000 d$ KCBS San Franciseo, Calif. 50000 KSSS Colo. Springs, Colo. WKIS Orlando,. Fla.
5000
1000
1000
10000
10000
50000
50000
$1000 d$
1000 d
1000
1000
10000
50000
1000 WMBL Morehead City, N.C.
1000
5000
1000
$250 d$
50000
50000
$250 d$
$250 d$
10000
10000
10000
10000
50000
1000 d

10000
50000
50000
50000 d
1000
$250 d$
250d
250 d
500 d
25000d
10000
1000 d
10000
50000
5000d

1000
1
1000
1000 d
10000
KUOM Minneapolis, Minn. 5000d WCAL Northfietd, Minn. WEW St. Louis, Mo. $\quad$. 1000 d WABC New York, N.Y. $\quad 50000$
KXA Seattle. Wash. 10000 d

250d
500 d
780-384.4
WBBM Chicago, III. 50000 WJAG Norfolk, Neb. WCKB Dunn, N.C.
WBBO Forest City WBBO Forest City, N.C. KSPl Stillwater, Okla.
WARL Arlington, Va.
790-379.5

## CBY Corner Brook, N.F. CKMR Newcastle

 CKSO Sudbury, Ont. WTUG Tuscaloosa, Al KCEE Tucson, Ariz. KCEE Tucson, Ariz.KOSY Texarkana, Ark.
KDAN Eureka, Calif. KDAN Eureka, Calif.
KABC Los Angeles, Calif.
WLBE Leesburg, Fla. WLBE Leesburg, Fla. WQXI Atlanta, Ga. WGRA Cairo, Ga, WAKY Louisvilie, Ky. WSGW Saginaw, Mich. KGHL Billings, Mont. WWNY Watertown, N.Y
 WTNC Thomasville, N.C.
WKLM Wilmington, $\mathbf{N}, \mathbf{C}$. KXGO Fargo, N.Dak. KXGO Fargo, N.Dak.
KWIL Albany, Oreg. WAEB Allentown. Pa WPIC Sharon, Pa. WEAN Providence, S. R.I. WWBD Bamberg, S.C. $\quad 10000$ WETB Johnson City, Tenn. 1000 d WMC Memphis, Tenn. KTHT Houston, Tex. KFYO Lubboek, Tox. WSIG Mount Jackson, Va. 1000 d WTAR Norfolk, Va. KNEW Bellingham, Wash. KNEW Spokane, Wash. WEAA W Washington, Wis
$800-374.8$
CHAB Moese Jaw, Sask, 10000 CKOK Penticton, B.C. 10000 CFOB Ft. Frances, Ont.
CJLX Ft. Wiliam, Ont. CJLX Ft. Willam, Ont CJBQ Belleville, Ont, CKLW Windsor, ont. CHRC Quebee, Que.
CJAD Montreal, Que.

$$
\begin{aligned}
& \text { VOWR St. Johns, N.F } \\
& \text { WHOS Decatur, Ala. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHOS Decatur, Ala. } \\
& \text { WMGY Montgomery, Ala. }
\end{aligned}
$$ KiNY Juneat, Alaska KAGH Crossett, Ark. KVOM Morriliton, Ark.

KUZZ Bakersfield, Calif. KUZZ Bakersfield, Cali
KBRN Brighton, Colo.
WLAD Danbary, Conn.
740-405.2

W.P. 1000d $1000 d$
$1000 a$ 1000 a
1000 d 1000 d
1000 d 1000 d
1000 d 1000 d
1000 d 1000 d
1000
200 250 d
1000 d 1000 d 1000 d
250 d 1000 d 250d 1000d 1000 d 50000
$250 d$ 50000 50000
$1000 d$ 1000d 1000d
25000 820-365.6

| WAIT Chieage, III. | 5000 d |
| :--- | ---: |
| WIKY EvansiHe, Ind. | 250 d |
| WOSU Columbus, Ohit | 5000 d |
| KIKI Honolut, Hawaii | 250 |
| WFAA Dallas, Tex. | 50000 |
| WBAP Ft. Worth, Tex. | 50000 |

830-361.2 $\begin{array}{ll}\text { WCCO Minneapolis, Minn. } & 50000 \\ \text { K80A Kennett, Mo. } & 1000 \mathrm{~d}\end{array}$ WNYC New York, N.Y. Io00d* 840-356.9
WKAB Mobile, Ala. Conn. 1000 d$\begin{array}{ll}\text { WHAS Louisville, Ky. } & 50000 \\ \text { WYPO Stroudsburg, Pa. } & 250 d\end{array}$
850-352.7
$\begin{array}{ll}\text { CKVL Verdun, Que. } & 50000 \\ \text { CKRD Red Deer, Alta. } & 1000\end{array}$
CKRD Red Deer, Alta.
WYDE Birmingham, Ala.

|  | KOA Denver, Colo. | 50000 |
| :--- | :--- | ---: |
| 1000 | WRUF Gainesvilie, Fla. | 5000 |
| 1000 | WEAT W, Palm Beach, Fla. | 1000 |
| 10000 | KIMO Hilo, Hawair | 1000 |

                                    0000
    1000
0000
50000
5000
KIMO Hilo, Hawail
1000
50000
$\begin{array}{lr}\text { WKBZ Muskegon, Mich. } & 1000 \\ \text { KFUO St. Louis, Mo. } & 5000 \mathrm{~d} \\ \text { WKiX Raleigh, N.C. } & 10000\end{array}$
$\begin{array}{lr}\text { WKIX Raleigh, N.C. } & 10000 \\ \text { WJW Cleveland, Ohio } & 5000\end{array}$
$\begin{array}{ll}\text { WEEU Reading, Pa. } & 500 \\ \text { WABA }\end{array}$
$\begin{array}{lr}\text { WABA Aguadilia, P.R. } & 250 \\ \text { WRAP Norfolk, Va. } & 5000 \\ \text { KTAC Tacoma, Wash. } & 1000\end{array}$
860-348.6
$\begin{array}{lr}\text { CJBC Toronto, Ont. } & 50000 \\ \text { WHRT Hartselle, Ala. } & 250 d\end{array}$
$\begin{array}{ll}\text { WHRT Hartselle, Ala. } & 50000 \\ \text { WAMI Opp, Ala. } & 250 d \\ \text { KA } & 1000 d\end{array}$
$\begin{array}{ll}\text { WAMI Opp, Ala, } & 1000 \mathrm{~d} \\ \text { KIFN Phoenix, Ariz. } & 1000 \mathrm{~d}\end{array}$

| KOSE Osceola, Ark. | 1000 d |
| :--- | :--- |
| KWRF Warren | 1000 d |

$\begin{array}{lr}\text { KWRF Warren, Ark. } & \text { 250d } \\ \text { KTRB Modesto, Calif. } & 10000 \\ \text { WKKO Coeoa, Fla. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WKKO Coena, Fla. } & \text { lo00d } \\ \text { WERD Atlanta, Ga. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WERD Atlanta, Ga. } & \text { I000d } \\ \text { WDMG Dougias, Ga. } & 5000 d \\ \text { WMR Marion }\end{array}$
$\begin{array}{ll}\text { WMRI Marion, Ind. } & \text { 250d } \\ \text { KWPC Museatine, lowa } & 250 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { KWPC Museatine, Iowa } & 250 d \\ \text { KOAM Pittsburg, Kans. } & 10000\end{array}$
KOAM Pittsburg, Kans. 10000
WSON Henderson, Ky.
WSON Henderson, Ky. 500d
WAYE Dundalk, Md, Mass 500d
WSBS Gt. Barrington, Mass, 250 d
KNU New Uim, Minn. 1000 d
KNUJ New Ulm, Minn, 1000 d
WMAE Forest, Miss. $\quad 500 \mathrm{~d}$
WFMO Fairmont, N.C. $\quad 1000 \mathrm{~d}$
$\begin{array}{ll}\text { WAMO Homestead, Pa. } & \text { 250d } \\ \text { WTEL Philadelphia, Pa. }\end{array}$
WTEL Philadelphia, Pa. $\quad$ 250d
WLBG Laurens, S.C. 1000 d
$\begin{array}{ll}\text { WLBG Laurens, S.C. } & 1000 \mathrm{~d} \\ \text { WIVK Knoxvilie, Tenn. } & l 000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WIVK Knoxville, Tenn. } & \text { l000d } \\ \text { WMTS Murfreesboro, Tenn. } & 250 d\end{array}$
$\begin{array}{ll}\text { WMTS Murfrecsboro, Tenn. } & \text { 250d } \\ \text { KFST. Ft. Stockton, Tex. } & \text { 250d } \\ \text { KPAN. }\end{array}$
KPAN Hereford, Tex. $\quad$ 250d
$\begin{array}{ll}\text { KSFA Nacogdoches, Tex. } & 1000 d \\ \text { KONO San Antonio, Tex. } & 5000 \mathrm{~d}\end{array}$
KONO San Antonio, Tox.
5000d
KWHO Salt Lake City,
$\begin{array}{lr}\text { KWHO Sait Lake City, } & \\ \text { WEVA Emporia, Va. } & 1000 d \\ \text { WOAY Oak Hili, W.Va, } & 1000 \mathrm{~d} \\ \text { WFOX Milwaukee, Wis. } & 250 \mathrm{~d}\end{array}$

Ke. Wave Length 880-340.7
WCBS New York, N.Y. WRFD Worthington, Ohio 5000d

890-336.9
WLS Chieago, III. WHNC Henderson, N.C. KBYE okla. City, Okla.

900-333.1
CKTS Sherbrooke, Que.
CHML Hamilton, ont.
CJBR Rimouski, Que.
CKJL St. Jerome, Que.
CKBI Prince Albert, Sask CYGX Yorkton, Sask. WGOK Mobile, Ala. A Ozark, Ala. KPRE Fairbanks, Alaska KBIF Harrisont Ark WBWL Georgetown, Del. WSWN Belle Glade, Fla. WMOP Ocala, Fla, WCGA Calhoun, Ga
WCRY Macon, Ga. WCRY Macon, Ga,
WJV Savannah, Ga WSiR Wichita, Kan. WLSI Pikeville, Ky. KREH Oakdale, La. WCME Brunswick, Maine WATC Gaylord, Mieh. KTIS Minneapolis, Minn.
WDDT Greenville, Miss. KFAL Fulton, Mo. KJSK Columbus, Nebr. WOTW Nashau. N.H. WBRV Boonvilie, N.Y WSPN Saratoga Sprgs., N. Y. 250 WAYN Roekingham, N.C. KFNW Fargo, N.Dak. WAND Canton, Ohio WFRO Fremont, Ohio WCPA Clearfield. Pa. WFLN Philadefphia, Pa. WCOR Lebanon, Tenn. KALT Atlanta, Tex. K WCO Conroe, Tex KFLD Floydada, 'Tex. WAFC Staunton, Va.
KUEN Wenatchee, Wash.
WATK Antigo, Wis.

## 910-329.5

CJDV Drumheller, Alta. CKLY Lindsay, ónt CBO Ottawa, ont.
CFJC Kamloops, B.C. KPHO Phoenix. Ariz KLCN Blytheville, Ark. KAMD Camden, Ark. KDEO El Cajon, Calif. KOXR Oxnard, Calif. KPOF nr. Denver, colo. WHAY New Britain, conn. WPLA Plant city, Fla. WGAF Valdosta, Ga
WSUI lowa City, Iowa WLCS Baton Rouge, La WABI Bangor, Maine wcoc Meridian, Miss KOYN Billings, Mont. KBIM Roswell, N Mex WLAS lacksonvilie, N.c.

## WPFB Middletown, Dhio

KGLC Miami, Okla.
WAVL Apollo. Pa.
WGBI Scranton, Pa
WSBA York, Pa.
WORD S Sartanhir.
WJWW Sartanburg, S.C. 1000 WEPG S Phnson city, Tenn. 5000 KNAF Fredericksburg, Tex. 1000 d KRIO McAllen, Tex.
all suth, tex.
AAL Salt Lake City Utah 1000
WWRJ White River Junction, $\mathbf{V}$,
WRNL Richmond, Va.
KORD Pasco wash:
KUDY Renton, Wash.
KISN Vanoouver, Wash.
WOOR sturgen Bay.
Kc. Wave Length

50000
1000 d
1000 d

1000
5000
10000
10000
10000
1000
1000
10000
10000
10000
0000
000d
000d
$000 d$
0000
l000d KOLO Reno, Nev. Nev.
1000 CQEO Albuquerque
l000d WTTM Trenton N.J.
1000 d WKRT Cortiand, N.Y
1000 d
1000 d
250 d
1000 d
1000 d KGAL Columbus, Ohio 250
000 d 1000 d
1000 d

000d WTND Providence, R.I.
250d KEZU Rapid City, S.Dak 500d WLIV Livingston, Tenn. I000d KELP El Paso, Tex. 000d 1000 d
1000 d
1000 d
1000 d
1000 d
1000 d
250 d

## 1000 d 1000 d

$1000 d$
$1000 d$
$1000 d$
$500 d$
500 d
500 d
1000 d
1000 d
1000 d
1000 d
10000 d
500 d 500 d
1000 d
1000 d
500 d
$500 d$
$250 d$
$250 d$
$1000 d$ KAHO Waiphau, Hawaii WBAA W. Lafayette ind KFNF Shenandoah, ind. WTCW Whitesburg, Ky. WBOX Bogalusa, La.
KTOC Jonesboro, WPIX Lexington Pk, WMPL Lexington Pk., Md. DHE Faribault, Minn. $\square$
d.

Kc. Wave Length W.P

## 920-325.9

0 CJCH Halifax, N.S. CKNX Wingham, Ont. WGTA Adalusia, Ala.
WWW Russellville, Ala. KARK Little Rock, Ark, KVEC San Luis Obispo, Cal KREX Durango, Golo. KLMR Lamar Colo WMEG Eau Gallie, F WGST Atlanta, Ga. 500 d 1000 d
1000 1000
1000
1000
1000 $\begin{array}{r}1000 \\ 1000 \\ \hline\end{array}$ 1000
1000 000 d 1000d
5000d
500
1000
1000 d
5000
080d
1000 d
1000
1000
1000
1000 d
000d
5000
5000

## 1000

000
10000
10000
1000 d
1000 d
5000
5000 000 $500 d$
5000
 $\mathrm{O}^{\mathbf{K}}$ W
$\qquad$

## W $\mathbf{W}$ $\mathbf{W}$

## 960

 KRSI St Loit. Mich.
WBKH Mark, Minn, I $\begin{array}{ll}\text { WBKH Hattiesburg, Miss. } & 500 \\ \text { KLIK Jefferson City, Mo. } 500 \\ \text { WRBF }\end{array}$ WBBF Rochester, N
WPET Greensboro, N.C.
WNdC Barnesbor, Pa.
WPEN Philadelphia, P
WSPA Spartanburg, S.



KWAT Watertown, S.Dak.
WAGG Franklin, Tepn.
KDSX Denison, Tex.
KPRG Houston, Tex.
KSEL Lubbock, Tex.
WXGI Richmond, Va.
KJR Seattle Wash
KIR Seattle, Wash.
WKAZ Charfeston,
WKTL Sheboyoan,
fac 312.
. 3
y, Al
KWS Kingax, N.S. WBRC Birningham, Ala.
WMOZ Mobile, Ala. KOOL Phoenix Ariz. KNEZ Lompoe, Calit.
KABL Oakland, Calif. WELI New, Haven, Conn.
GRO Lake City, Fla. WJCM Sebring, Fla. WRFC Athens, Ga.
KSRA Salmon, Idaho
KMBT South Bend, Ind.
WPRT Prestonsburg, Ky.
KROF Abbeville, La
WBOC Salishury WFGM Fitchburg, Mas WHAK Rogers City, Mich.
KLTF Little Falls, Minn. WABG Groenwood, Miss. KNEB Sape Girardeau, Ho
KWYK Farmington Nebr. KWYK Farmington, N.Mex
WEAV Plattshurg. N.Y. WFTC Kinston, N.C.
WWST, Wonster, Ohio KGWA Enid, Okla.
KLAD Klamath Falls, Oreg. W WH
WA
WA WA
WB
WB KBMC McMinnvilie, Tenm. KIMP Mt. Pleasant, Tex.
KGKL San Angelo, Tex. < WDBJ Roan, Utah WTCH Shawano, Wish. 970-309.1
CKCH Hull, Que.
WERH Hamilton WTBF Troy, Ala, Al KNEA Jonesbore, Ark. 5000

500
500

1000
5000
5000

1000
1000
10000
0000
1000
5000 WFMD Frederick, Md, K WREB Holyoke, Mass.
WBCK Battle WBCK Battle Creek, Mi
WSLI Jaekson, Miss

$$
\begin{aligned}
& \text { KBIS Bakersfield, Calif, } \\
& \text { KCHV Coachella, Calif. } \\
& \text { KBEE Modesto, Calif. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KFEL Pueblo, Colo. } \\
& \text { WFLA Tampa. Fla. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KHBC Hilo, Hawait } \\
& \text { KAYT Rupert, Idaho }
\end{aligned}
$$

$1000 d$
5000 d ich.

$$
\begin{aligned}
& \text { KGRV Goacnena, Caili. } \\
& \text { KBEE Modesto, Calif. } \\
& \text { KFEL Pueblo. Colo. }
\end{aligned}
$$

8088

\section*{\section*{9} <br> | d | 9 |
| :--- | :--- |
| d |  |
| C |  |}

$$
\begin{aligned}
& \text { WFLA Tampa, Fla. } \\
& \text { WIN Atlanta, Ga. } \\
& \text { WVOP Vidalia, Ga. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WVOP Vidalia, Ga. } \\
& \text { KHBE Hilo, Hawai }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KAYT Rupert, Idaho } \\
& \text { WMAY Springfield, Il. } \\
& \text { WAVE Louisville, Ky. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAVE Louisvilie, } \\
& \text { KSYL Alexandria, } \\
& \text { WCSH Portland, }
\end{aligned}
$$

$$
{ }^{10}[11 .
$$

000
1000
1000 ..... 000

$$
\begin{aligned}
& \text { WCSH Portland, Maln } \\
& \text { WAMD Aberdeen, Md } \\
& \text { WESO Southbridae. }
\end{aligned}
$$

500
1000 d

$$
\begin{aligned}
& \text { WAMD Aberdeen, Md. } \\
& \text { WESO Southbridge, Mas } \\
& \text { WIAN IShnemina Minh }
\end{aligned}
$$

## d

w

Utah 1
netiont
,

1000
$000 d$
500 d
W

Xz Amarillo, Tex.
950-315.6
CKNB Campbeliton, N.B. WRBB Barrie, Ont,
XSA Farrest City, Ark: KAHI Auburn, Calif. WFBS
WLOF
WGTA
WIPR San Juan, P.R.
nash
$\qquad$
5000 d

50000
10000
1000
50000
50000
50000
1000
10000
1000
$1000 d$
1000 d
250
10000
1000
0
0
0
0
0
0
0
0
0 GJGX Yorkton, Sask.
KJB Vernon, B.C.
KFRE Fresno, Calif. VINZ Miami, Fla. WMAZ Macon, Ga. KloA Des Moines, lowa WYLD New Orfeans, La. WWOM New Orieans, La. KGRL Bend, Oreg.
WESA Charlerol, P
JAN Ishpeming, Mich.
KHM Jackson, Mich.
LT No, Platte, Nebr. WNTA Newark,
WCHN Norwich, N.Y.
WRCS Ahoskie, WWIT Canton, N.C. WDAY Fargo, N.Dak.
1000
5000
5000d
$5000 d$
1000
$1000 d$
000 d
5000
1000 d

Kc. Wave Length KCHI Chillicotho, KRVN Lexington, Nebr. WABS New York, N.Y. WELS Kinston, N,C. WIOI New Boston, Ohio WIT Lewisburg, Pa. WORM Savannah, Terín. KBUY Amarillo, Tex. WEIK CharlottecviI WMEV Marion, Va. WCST Berkeley Sprgs,W.W. 1020-293.9

KPOP Los Angeles, Calif. WCIL Carbondale, Ill. WPEO Peoria, IIR. KDKA Pittsburgh, Pa. 1030-291.1
WBZ Boston, Mass. YOB Albringield, wass. KCTA Corpus Christi, Tex 10000

## 1040-288.3

KHVH Honolulu, Hawail WHO Des Moines, Iowa KIXL Dallas, Tex.

1050-285.5
CFGP Grande Prairie, Alta. 10000 CKSB St. Boniface, Man. 10000 osic saut ste, marie, Ont. 25 WREM Alexander City, Ala. WCRI Scottsboro, Ala. KVWM Show Low, Ariz. KOFY Sittie Rock, Ark KWSO Wasco, Calif. KLMO Longmont, Colo. WJSB Crestview, Fla. Wivy Jacksonville, Fla. WHBO Tampa, Fla. WRMF Titusville, FIa WJAZ Albany, Ga WAUG Augusta, Ga. KZIN Coeur D'Alene, Idaho WDZ Decatur, 11 .
KNCO Garden City, Kans. ZPR Cavington, ky KCIL Lake Providence, La. KCIM Shreveport, La. ${ }^{\text {Kilver Sprg., }}$ Wd WPAG Ann Arbor, Mich KLOH Pipestone, Minn. WACR Columbus, Miss. KSIS Sedalia, Mo. KRBO Las Vegas, Nev
WBNC Conway, N. H. WBNC Conway, N.H. WSEN Baldwinsvifle, N.Y. WHGM New York, N. WBTL Farmville, N.C
WFSC Franklin, N.C. WLON Lincolnton, N.C. WWGP Sanford, N.C. KCCO Lawton, Okla. KFMJ Tulsa, Okla KUBE Pendileton, Oreg. KEED. Springfield, Oreg WBUT Butler, Pa. WLYC Williamsport, Pa WSMT Spartar Tenn KLEN Killeen, Tex. KWLD Liberty, Tex. WBRG Lynehburg, Va, WCHS Norfolk, Va. KNBX Kirkland, Wash. WCEF Parkersburg, W.Va. WEiP Kenosha, Wis. WLiP Kenosha, Wis.
KWFy Douglas, Wyo.

## 1060-282.8

CFCN Calgary, Alta. KPAY Chico WNOE New Orleans, La WHFB Benten Harbor,

WMAP Monroe, N.C. WCMW Canton, Ohio WRCV Philadelphia, Pa.

## 1070-280.2

CBA Sackville, N.B. WAPI Birmingham, Ala KNX Los Angeles, Calif. WIBC Indianapolis, Ind. 500d $250 d$
1000 d 1000 d
250 d $250 d$
5000
$250 d$ $250 d$
$1000 d$
$1000 d$ 250 d
1000 d

5000
1000 d $1000 d$
$1000 d$ 50000 50000 10000
50000 d 1000 d
250d 000d 000d 000d 250d 1000d 1000d 250d 250d 500 d
1000 d $1000 d$
$1000 d$ 500d 500 d
250 d 2000d 1000 d 1000 d 250 d
250 d 000d 1000d $1000 d$ 1000 d 1000d $500 d$
$1000 d$ $\frac{250 d}{1000 d}$ 50000 250d
500 d 1000d 1000 d 250d 1000 d 1000 d 250 d 1000 d
1000 d 1000 d
250 d
250 d 250 d 1000d 1000 d $1000 d$
$250 d$ 250d
10000
10000 50000

1000 d
50000
$\qquad$
W.P.|Kc. Wave Length 250d KFBI Wiehita, Kans. 50900 d KHMO Hannibal, Mo. 25000d WHPE High Point, N.C. 50000 WDIA Memphis, Tenn. I000d KOPY Alice, Tex.
1000 W WOW Madison, Wis.

WRB Carrolton , Cailf. 1000 d WHLI Hempstead, N.Y. $\quad$ 2500 KYW Cleveland, Ohio 50000 WGPA Bethiehem, Pa.

## 1110—270.1

080-277.6
CHED Edmonton, Alta. KSCO Santa Cruz, Calif. WTic Hartford, Conn. WKLO Loulsville, Ky. WOAP OWOSSD, MJeh. WYSL Kenmore, N.Y. WEWO Laurinburg, N.C. KWJJ Portiand, Oreg. WEEP Pittsburgh, Pa. KRLD Dallas, Tex.
1090-275
CHEC Lethbridge, Alta. CHRS St. Jean. Ont. KTHS Little Reck. WCRA Effingham, Ili. KNWS Waterloo, lowa WBAL Baltimore, Md WILD Boston, Mass. WMUS Muskegon. Mieh. KING Seattle, Wash.

## 1100-272.6

CFML Cornwall, Ont KRLA Pasadena, Calif. VALT Tampa, Fla. IPA Hilo, Hawai KFAB Omaha, Nebr YBT Charlotte, Nebr. BND Bend, Oreg. WNAR Norristown, Pa WHIM Providemae

120-267.7
WUST Bethesda, Md. WWOX St Louis, Mo. KCLE Cleburne, Tex. 1130—265.3
CKWX Vancouver. B.E. WWKH San Diego, Calif. WCAR Shreveport, La WDGY Minneapolis, Minn
WNEW New York, N.Y. 1140-263.0
CKXL Calgary, Alta. KRAK Stockton, Calif. KGEM Miami, Fla. WSIV Pekin, III. KLPR Oklahoma City, Okla 1000 d WITA San Juan, P.R. KSOO Sioux Fails, S.Dak.
KORC Mineral WRVA Richmond Va. Tex. 250 1150-260.7
CKSA Lfoydminster, Alta, CHSJ Saint John, N. B. CKOC Hamilton, Ont CKX Brandon, Man. WBCA Bay Minette, Ala. WGEA Geneva, Ala. WJRD Tuscaloosa, Ala. KXLR No Litt, Ariz. 1000 KFSG Los Angeles, Calif. KRKD Los Angeles, Calif
KJAX Santa Rosa, Gallif. KGMC Englewood, Colo.
WGNX Middletown, Gonn WDEL Wilmington, Del. WNDB Daytona Bch., Fla. WFPM Fort Valley, fGa WJ EM Valdosta, Ga. KANI Oaht, Hawaij WGGH Marion, III. KSAl Des Moines. I
50000 W MST Mt. Sterling, Ky.
5000 WLOC Mumfordville, Ky.
10000
1000
50000
5000
2500
10000
10000
10000
10000
50000
1000
000
000
000
000
1000
5000
d 5000
250
1000
50000
250 d
1000 d
5000
1000 d
1000 d
50000

2000
250 d
50000
2500

1000
250 10000 10000 g

1000
$5000{ }^{1}$
5000 d
50000
50000 $1000 d$ 1000
5000 d 5000 d 50000
1000
10000
W.P.|Kc. Wave Length W.P 10000 KSEN Shelby, Mont. 1000 5000 KDEF Albuquerque, N. Mex. 1000 d WB
WG
WC
WI

c. Wave Length
 1230—243.8
CFCW Camrose, Alta. 1000CPNS Saskatoon, Sas KCOV Montgomery, Ala. KLOK San Diego, Calif KOHO San Jose, Calif. WLBH Mattoon, III. KSTT Davenport, lowa WLEO Ponee, P.R. $\begin{array}{lr}\text { KPUG Bellingham, Wash. } & 250 \\ \text { WWVA } & 1000 \\ \end{array}$ $1180-254.1$ WEDS Jacksonville, Il]. $1000 d$
50000 WHAM Rochester, $\mathrm{N}_{\mathbf{H}} \mathbf{Y}_{\text {. }}$

1000
10000
50000
10000
1000
$250 d$
1000
50000
250
1000
50000 KAAA Kingman Ariz. KRIZ Phoenix, Ariz KCON Conway, Ark KBPW Ft. Smith, Ark, KGEE Bakersfield, Galif. KWTC Barstow, Calif. KIBS Bishop, Calif. KXO EI Centro, Calif.
KDAG Ft. Bragg, Calif KGFJ Los Angeles, Calif KRRL Paso Robles, Calif. KRDG Redding, Calif KEXO Grand June KEXO Grand June., Colo. KDZA Pueblo, Colo. KGEK Sueblo, Colo. WINF Manchester, Conn WGGG Gainesville Fla. WGGG Gainesvilie, Fla. WMAF Madison, Fla WSBB New Smyrna Beh;; Fla. 250 WNVY Pensacola, Fla. Fia. 250 WJNO W. Palm Beach, Fla. WBIA Augusta, Gaeach, FI WBLI Dalton, Ga. WXLI Dublin, Ga. WFOM Marietta, Ga WAYX Savannah, Ga. KAYX Wayeross, Ga. KORT Grangevilio, Idaho KRXK Rexburg, idaho WQBC Bloomington, II WQUA Moline, III. wIOB Sparta, IIt. WSAL Hogmonsport, Ind. WTCS Tell City, Ind. WBOW Terre Haute, Ind, KFJB Marshalltown, lowa WHIP Danville, Ky. WHOP Hopkinsville, Ky. WMLF Pineville, Ky. WJBW New Orleans, La. KSLO Opelousas, La. WITH Baltimore Md WCUM Cumberland, Md. WMNB No. Adams, Mass. WESX Salem, Mass. WNEB Worcester, Mass WJEF Grand Rapids, Mich WIKB Iron River, Mieh WS00 SIt. Ste, Marie, Mich. WSTR Sturgis, Mich. WKLK Cloquet, Minn. KYSM Mankato, Minn KTRF Thief Riv. FIIs., Minn. KWNO Winona, Minn. WCMA Corinth, Miss. WHSY Hattiesburg. Miss WSSO Starkville, Miss. WAZF Yazoo Gity, Miss. KODE Joplin, Mo. KLWT Lebanten, Mo. KNCM Moberly, Mo. KANA Anaconda, Mont KBMN Bozeman, Mont. KXLO Lewlston, Mont. KLCB Libby, Mont. KTNC Falls City, Nebr. KHAS Hastings, Nebr. KELY Ely, Nev
1000 d
1000 d
1000d
1000 d 250d WMOU Berlin. N.H.
25
25
250

WOAI San Antonio, Tex. 50000

## 1210-247.8

WCNT Centralia, III. 1000 d WADE Wadesboro, N.t.
WA
1220—245.8
CJOC Lethbridge, Alta, 10000 CJRL Kenora. Ont. CKEC New Glasgow, N.S. CJSS Cornwall, ont. WKSM Shawinigan, Quebec
WEZB Birmingham, Ala. WPRN Butler, Ala. KVSA Mogehee, Ark. KFSC Denver, Colo
$\qquad$ WKBX Kissimmee,
WFEG Miami, Fla. WFEC Miami, Fla. WCLB Camilia, Ga. WPLK Rockmart, Ga. WLPD LaSalle, IIt. WKRS Waukegan, II KJAN Atlantie, Ind. KOFO Ottawa, Kans 10004 WFKN Franklin, Ky,
1000 K 1000 WLBI Denham Springs, La. 5000d WSME Sanford, Waine 1000 WBCH Hastings, Mic力. 5000 WAVN Stillwater, Minn.

Kc. Wave Length W.P.Kc. Wave Lengt WTSV Claremont, N.H. KALG Alamogordo, N.Mex. KOTS Deming, N. Mex. KFUN Las Vegas, N.Mex. GNS Rosweli, N. Nex. WNA Cheektowaga, N. WHUC Hudson, N.Y WLFH Little Falls, N.Y. WFAS White Plains, N.Y WFAI Fayettevilie, N.C. WMFR High Paint. N.C WNNC Kinston, N.C. wCBT Reanok N. KDIX Dickinson Nap. N.C. WCPO Cincinnati, Ohio WCOL Columbus, Ohio WIRO Ironton, Ohio WYOL Toledo, Ohio WBBZ Ponca City, Okla. KRAS Asioria, Oreg. K00S Coos Bay, Ores KGRO Gresham, Oreg. KYJC Medford, Oreg. WBVP Beaver Falls, Pa WEEX Easton, Pa. WKBO Harrisburg. P WCRO Johnstown, Pa WBPZ Lock Haven, ${ }^{\text {P }}$ WERI Westerly, R.I WAIM Anderson, S.C. WNOK Columbia, S.C KiSD Sioux Falls, S.Dak KSIX Corpus christi, Tex. KSIX Corpus Christi, Tex. KNUZ Houston Tex. KNUZ Houston, Tex. KLYT Leveltand, Tex. KEEE Nacogdoches, Tex. KOSA Odessa, Tex. KHHH Pampa, Tex. KCMC Texarkana, Tex KSST Sulphur Sprgs., Tex. KMUR Murray Utah KMUR Murray, Utah WJOY Burlingten, $V$ WBEI Abingdon, Va. WFVA Frederickshurg, Va. WNOR Norfolk, Va.
KIYK Everetr, Wash. KREW Spokane, Wash. WTAP Parkersburg W whBy Applin, w.Va WHBY Appleton, Wis. WHVF Wausau. Wis. WHVF Wausau, Wis,
KVOC Casper,

## 1240-241.8

CFLM La Tuque, Que.
CFNW Norman Wells,
CFPR Prinee Rupert Terr. CFWH Whitehorse, Y.T.
CJCS Stratford 0 ,
cJRw Summerside
CKBS Summerside, P.E.I.
CKLS LaSarre, Que, WEBJ Rrewton, Ala WOWL Florence Ala WARF Jasper, Ala Ala. KZOW So. of Globe, Ariz. KOFA Yuma, Ariz. KVRC Arkadelphia, Ark. KHOZ Harrison Ark K WAK Harrison, Ark. KPLY Crescent City, Calif. KRDU Dinuba, Calif. KPPC Pasadena, Calif KRKS Pidgecrest Cali KROY Sacramento Calif. KBNO San Bernardino, Calif. KSMA Santa KSMA Santa Maria, Calif KRDO Golo. Spras., Colo. KDGO Durango, Colo. KSLV Monte Vista, C KCRT Trinidad Colo. wwco Waterbury co. WBGC Waterbury, Conn. WLCO WINK Fort Myers, Fla WWMB Melbourne, Fla. WFOY St. Augustine, Fla WBHB Fitzgerald, Ga, WON Gainsvie, Ga WBAG LaGrange, Ga
WWNS Statestoro.


WPAX Thomasville, Ga.
VTWA Thomson, Ga.
KANI Kailua, Hawaii ohio la. a. KBEL Idabel, 0kla. KOKL Okmulgee, Okła.
1000

| 250 | WALO Humacao, P. R |
| :--- | :--- |
| 200 |  |
| WWO W Oonsocket, |  |
| WK |  |

            WBEJ Elizabethton, Tenn.
            WBIR Knoxville, Tenn.
            WKDA Nashville, Tenn
            WENK Union City, Tón.
            Alpine, Tex
                    KEAN Brownwood,
    KORA Bryan Tex
KOCA Kilgore, Tex
KSOX Raymondvilie, Tex.
Kx0X Sweetwater, Tex
WSKi Montpelier, $V t$.
WSSV Petersburg,
Whov Roanoke.
WYON Staunton, Va
KGY Olympia, Wash
WKOY Bluefield, W.Va
WDNE Elkins. W.Va,
WONT Manitowoc, Wi
WIBU Poynette, Wis
WOBT Bhinelander, Wis.
KFBC Cheyenne. Wyo
KLUK Evanston, wyo
KASL Neweastle, wyo.
KRAL Rawlins, Wyo.
1250-239.9
250 CHWO Oakville, Ont.
250 CKBL Matane, Que.ty, N.C.
$\qquad$ N. Dak, Ohio
Pa.
R.I.
Tenn

## -


ic. Wave Length


House, Ohio WPEL Montrose, Pa. WCAE Pittshurgh,
WNOW York, Pa. WTMA Charleston, S.C KFTV Paris, Tex.
KPAC Port Arthur, Tex
KSML Seminole, Tex.
KVEL Vernal, Utah
WDVA Danville, Va. WYSR Franklin, Va.
KWSC Pullman. Wash.
WEMP Milwaukee, Wis
1260-238.0
GFRN Edmonton, Alta. WCRT Birmíngham KPIN Casa Grande, Ariz. KCCB Corning, Ark
KBHC Nashville, Ark
KG1L San Fernándo, Calif. WMMM Westport, conn. WWDC Washington, D.C.
WFTW Fort Walton Beach,
Florida WMWA Miami, Fla.
WWPF Palatka, Fla. WH
WB
WTJ

Kc. Wave Lengthw.p.
000d ..... 1000dCHWK Chillwack, B.C.
CJCB Sydney, N.CFGT St. Joseph d'AIma,
$\begin{array}{r}1000 \\ 10000 \\ \hline\end{array}$
WGSV Guntersvillo, Ala.Toped
KDJI Holbrook, ArizKPAP Redding, Calif.KCOK Tulare, Calif.10004
16004
WHIY Orlando, Fla.WTAL Tallahassee, Fla.500 F
WJJf Commoree, Ga.WEIC Twin Falls, IdahoIdaho5000
5000
56.00WHBF Rock Island, II.WCMR Elkhart, Ind.WWCA Gary, IndWORX Madison, Ind.WAIN Columbia, Ky.WFUL Fulton, Ky.
宮品
La.준WSPR Springfield, Ma
WXYZ Detroit, Mich.
KWEB Rochester, MinWLSM Louisville, Miss.
KUSN StWTSN Dover, Noseph,5000 WDSN Dover, N.H.0000 KRAC Alamogordo, N.Mex.
1000dWHLD Niagara Falls,
WDLA Walton, $\mathbf{Y}$,500 d
5000WGGG Belmont, N.C.500 d
1000 d
WMPM Smithfield, N.C.
WILE Cambridge, OhioKWPR Claremore, OKia.
KAJO Grants Pass, Oreg.1000 d$1000 d$
$1000 d$000 d
5000
WBHC Lebanon, Pa.1000
10000KIHO Sioux Falls, S.Dak. 10005000
100001000
5000 dKFJZ Fort Worth, Tex.WYUD Newport News, Va.
KCVL Colville, Wash,KBAM Longview, WashWKYM Kongview, Wash
1280-234.2
K|FI Idaho Falls, Idaho WWEI Woiser, Ida.

$\qquad$

| 5000 |  |
| :---: | :---: |
|  |  |
| 1000d |  |
| 5000d | WNPT |
| 1000 | KHEP |
| 5000d | KFOX |
| 1000 d | KjoY |
| 5000 d | KTLN |
| 5000 | WSUX |
| $1000 d$ | WDSP | 08ed

$t$

## 1000

 $5000 d$5000 $5180 d$
$1000 d$
5000 5009
$1000 d$
5000
5000
500
1000
$1000 d$
$1000 d$
10004
$1000 d$
$1000 d$
1000
5000
$500 d$
$1000 d$
$1000 d$
5000
$500 d$
$1000 d$
$5000 d$
$1000 d$
1000
$1000 d$
1000
$1000 d$
$500 d$
$1000 d$
1000
$1000 d$
1000
$5000 d$
1000
$1000 d$
$1000 d$
5000
$1000 d$
$1000 d$
$1000 d$
50000WPBY Belleville, III.
WFBM Indianapolis, IndWFBM Indianapolis,
KFGQ Boone, Iowa:
KWHK Hutchinson, Kan
WXOK Baton Rouge, La.
WEZE Boston, Mass.
WALM Albion, Mich.
WBL Holland, Mich.
KROX Crookston, Minn.KDUZ Hutehinson, Minn 1000WGV Hutchisson, Minn. 1000 dWNSL Lauret, Miss.
KGBX Springfiefd, Mo.KGBX Springfiend, Mo.KimB Kimball, Nebr.WBUD Trenton, N.J.
KVSF Santa Fe, N.Mex,
WNDR Syracuse, N.Y.WGWR Asheboro, N.C.WCDI Edenton, N.C.WNXT Portsmouth, Ohio
KWSH Wewoka-Seminole,KMCM MeMinnville, Oreg.KMCM MeMinnviWERC Erie, Pa,WISO Ponce, P.R.
WMWJOT Lake City, S.C.KWYR Winner, S.Dak.WNOO Chattanooga, Tenn.WhCH Church Hill. Tenn.WDKN Dickson, Tenn.WCLC Jamestown, TennKSPL Diboll, TexKBLP Falfurrias, TexKWFR San Angelo, Tex.KTUE Tulia, Tex.
KTAE Taylor, Tex.KIAE Taylor, tex.
WCHV Charlottesville, Va.
WBCR Christianshuri, VaWBCR Christiansburg, Ya.KWIQ Moses Liake, Wash. I000dWVV Grafton, W. Va.
WWIS Blaek River Falls,
WEKZ Monroe, Wis.
NEKZ Monroe, Wis.
KPOW Powell, Wyo.
$1270-236.1$

## 1000 d

 5000 WQIK Jacksonvillo, Flarida 5000d WIPC Lake Wales, Fla. Wibs Macon, Ga. WMRO Aurora, III. WGBF Evansville, Ind. KSOK Arkansas City, Kans, 10000 WCPM Cumberland, Ky. $\quad 1000 \mathrm{~d}$ WDSU New Orleans, La. 5000 $\begin{array}{ll}\text { KWCL Oak Grove, La. } & 500 d \\ \text { WEIM Fitchburg, Mass. } & 5008\end{array}$ WFYC Alma, Mich. Minn top0d $\begin{array}{ll}\text { KVOX Moorhead, Minn. } \\ \text { WSJC Magee, Miss. } & 5000 \\ \text { WS. }\end{array}$ KDKD Clinton, Mo. KYRO Potosi, Mo.KCNI Broken Bow, Nebr. 500 d
1000 d KCNI Broken Bow, Nebr. 1000 a
KTOO Henderson, Nev. 5000 d WHBI Newark, N.J. 2. . 2500 $\begin{array}{ll}\text { KHOB Hobbs, N. Hex. } & 1000 \mathrm{~d} \\ \text { WADO New York, N.Y. } & 5000\end{array}$ WVET Rochester, N.Y. 5000 F WSAT Saratoga Sprgs., N.Y. 1000
1000 d
1000d
5000 d
5000 d
1000 d
1000 d
1000 d
1000 d 1000 d 000d
000 d 000d
$500 d$ $1000 d$ $1000 d$
$1000 d$ 1000 d
5000 $\begin{array}{lr}\text { WONW Defiance, ohio } & 500 \\ \text { WLMJ Jackson, Ohio } & 1009 \mathrm{~d} \\ \text { KLCO Poteau, Okla. } & 1000 \mathrm{~d}\end{array}$ $\begin{array}{lr}\text { KERG Eugene, Oreg. } & 5000 \\ \text { WBRX }\end{array}$ $\begin{array}{ll}\text { WHVR Hanover, } P a_{\text {. }} & 500 d \\ \text { WKST New Castle, Pa. } & 5000 \\ \text { WH. }\end{array}$ WKS New Castie, Pa. $\quad 5000$
WAM Arecibo, P.R. WANS Anderson, S.C. 1000 WMCP Columbia, Tenn. $\quad 1000 \mathrm{~d}$ $\begin{array}{ll}\text { WDNT Dayton, Tenn. } & 1000 \mathrm{c} \\ \text { KNIT Abilene, Tex. } & 500 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { KWHI Brenham, Tex. } & 1000 \mathrm{~d} \\ \text { KLUE }\end{array}$ KNAK Salt Lake City, Utah 5000
WYVE Wythevilie, Va. WYE Wythevilie, Va. $\quad 1009 \mathrm{~g}$
KIT Yakima, Wash,
WVAR Richwood, W. Va. $1270-236$.
CHAT Medicine Hat, Alta. 1000 White's radio log

Ke．Wdve L
$1290-232.4$ CFAM Altona，Man． WTHG Jackson，Ala KE08 Flagstaff，Ariz． kCUB Tucson，Ariz． KD，mS EI Dorado，Ark． KUOA Siloam Sprgs．，Ark． KHSL Chico，Calif． KITO San Bernardino，Calif． WGec Hartford，Conn． WTMC Deala，Fla． WSCM Panama City Beach，
WIRK W．PaIm Beh．，Fla WDEC Americus，Ga WTOC Savannah，Ga KYTE Pocatello，Idaho WIRL Peoria，III． KJEF Jennings，La． WHGR Houshton Lake， WNIL Niles，Mich， KBMO Benson，Minn WBLE Batesville，Miss． KALM Thayer，Mo． KGVO Missoula，Mont KOIL Omaha，Nebr． KSRC WGLI Babylon，N．Y． WNBF Binghamton，N．Y． WHKY Hiekory，N．C． WOMP Bellaire，Ohio KUMA Pendleton，Oreg． WLIQ Portland，oreg． WICE Providence，R．I． WFIG Sumter S．C KALT Big Lake，Tex．
KIVY Grockett，Tex． KRGV Weslaco，Tex． KRGV Weslaco，Tex．
KTRN Wilhta Falls，Tex．
WPVA Colonial Hots．，Va． WAGE Leesburg，Va．， WVOW Logan，W．Va． wCOW Sparta，Wis．
1300－230．6
CBAF Moncton，N．B． WAVC Boaz；Ala． WTLS Tailassee，Ala． KROP Brawley，Calif． KROP Brawney，Calif， KVOR Pasadena，Calif． WAVZ New Haven，Conn． WRKT Tacoa Beach， WMTM Moultrie，Ga． KOZE Lewiston，Pdaho WTAQ LaGrange，ilt． WHLT Huntington，Ind． WMFT Terre Haute，Ind．
KGLO mason City．Iowa WBLG Lexington，Ky． WIBR Baton Rouge．La． WFBR Baltimere，Md． WJDA Quincy，Mass． WOOD Grand Rapids，Mich． WRBC Jackson，Miss． KMMO Marshall，Mo． KPTL Carson City，Nev． WAAT Trenton，N．J． WOSG Fulton，N．Y． WSYD MI．Airy，N．C． WERE Cleveland，Ohio KOME Tulsa，Okla．
KDOV Medford，Oreg． KDOV Medford，Oreg．
KACI The Dalles，Oreg KACI The Dalles，Oreg
WTL Mayaguez，P．R． WCKI Greer，S．c． KOLY Mobridge，S．Dak． WMTN Morristown，Tenn． WMAK Nashyille，Tenn
KVET Austin．Tex．
KTFY Brownfield，Tex．
KKAS Silshee，Tex．
KOL Seattle，Wash．
WCLG Morgantown，w．Va．
WKLC St．Albans，W．Va．
$1310-228.9$
CKOY Ottawa，ont． 50

W．P．Kc．Wave Length W．P．｜Kc．Wave Length CJRH Richmond Hill，Ont． WHEP Foley，Ala． 1000 d KBUZ Mesa，Áriz．
1000d KBOK Malvern，Ark． 1000 KTKR Taft，Calif，
1000 KFKA Greeley，Colo．
5000 d WICH Norwigh，Conn．
5000 d
WOOO Deland，Fla．
5000 WAUC Wauchula，Fla
1000 d W BRO Waynestoro，Ga．
50 $\begin{array}{r}500 \\ 1000 \\ \hline\end{array}$

000 KLX Twin Falls，Idaho
0 KSH Indianapolis，Ind． WTTL Keokuk，lowa
500d WDOC Prestonsburg，Ky． 5000 KIKS Sulphur，La．
1000 d WLOB Portland，Maine
5000 WORC Wortand，Maine 1000 d WKMH Dearborn，Mieh
5000 KRBI St．Peter，Minn
5000 WXXX Hattiesburg，M． 1000 d KFSB Joplin，Mo，

500
500d
500 d 500
500
500 $5000 d$
$500 d$ $5000 d$
$500 d$

| 1000 d | WNAE Warren，Pa． | 5000 d |
| ---: | :--- | :--- |
| 1000 d |  |  |
| 5000 | WDKD Kingstree，S．C． | 500 d |
|  | WDOD Chataner |  |


 $5000 d$
$500 d$ $5000 d$
$500 d$ $5000 d$
$500 d$
 $5000 d$
$500 d$ $5000 d$
$500 d$

м延を系を WMEN Tallahassee，Fl WHLT Dublin，Ga． WEAW Evanston，III． WRAM Monmouth，II．
WRRR Rockford，IH． WJPS Eyansville，Ind． KWWL Waterloo，Iowa
KFH Wichita，Kans． WHOR Morehead，Ky． WASA Lafayette La． WCRB Waltham，Ma
WTRX FInt，Mich． WLQL Minneapolis，Minn
WCRR Corinth，Miss．
WJPR Greenville，Miss．

CJQC Quebec，Que CKOR－I Parry Sound，Ont．－ WKUL Cullman，Ala． WJOI Elorence，Ala． WGEB Sylacauga，Al KIBH Seward，Alaska
KIKO Miami，Ariz KIKO Miami，Ariz． KZOK Prescott，Ariz． KBTA Batesville，Ark．
KBRS Springdale，Ark．

5000d
1000d
1000 d
5000
1000 d
1000 d

## 5000

## 500 d <br> 1000 d

## 1000 d

1000
1000
500d
5000 d
1000 d
5000
500
10000

500 d500 d
5000320－227．1
1000
1000d1000d
5000
1000 d
1000 d $\begin{array}{r}1000 \mathrm{~d} \\ 5000 \\ \hline\end{array}$
5000
250 d1000d
1000 d

$$
\begin{aligned}
& \text { WHOK Lancaster, Ohio } \\
& \text { KWOF nlinton fla }
\end{aligned}
$$

5000
5000 븡ㅇㅇㅇ
50001000d5000500 d1000 d
1000 d WHN Fort Smith CUDE Oenean，Calif．1

## 5000 d

000 d
5000

$$
\mathbf{w}
$$5000 d

1000 d1000 d
5000 d

KYR Manchester，Tenn．5000d KVMC Colo．City，Tex．1000 KCPX Salt Lake City，Utah1000 d KXRY Richmond，Va．| WQMN Superior，Wis． |
| :--- |
| $\begin{array}{ll}\text { King } \\ 1000 \mathrm{~d}\end{array}$ |1330－225．4

5000

CHOM Vancouver $B$ CKEC New Glasgow，N．S． JJSO Sorel，P．Q． WAGP Dothan，Ala WENN Birmingham，Ala． KRLW Walnut Ridge，Ark． KCRA Sacramento，Callf． KAVI Rocky Ford，Col WATR Waterbury，Con
WGMA Hollywood，Fla． WJHP Jacksonvilie，Fla． WHIE Grifin，Ga． WNEG Toccoa，Ga，
WKAN Kankakee， 111 KMAQ Maquoketa，lowa KLWN Lawrence，Kans，
WBRT Bardstown，Ky． WNGO Mayfield．Ky KVHL Homer，La
WICO Salisbury， WARA Attleboro，Mass WILS Lansing，Mich． WCPG Houston，Miss． WRIW Picayune，Mis KXLW Clayton，Mo．

$$
\begin{aligned}
& \text { KOLT Scottsbluff } \\
& \text { WWH G Horneli, N. }
\end{aligned}
$$

5000 d
WAGY Forest City, N.C.

$$
\begin{aligned}
& \text { WCOG Greensboro, N.C. } \\
& \text { KQDY Minot, N.Dak. }
\end{aligned}
$$

KWOE Olinton, okla.

$$
\begin{aligned}
& \text { WKAP Allentown, Pa. } \\
& \text { WAMP Pittsburgh, Pa. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WSCR Scranton, Pa. } \\
& \text { WRIO Rio Piedras, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRIO Rio Piedras, } \\
& \text { W } \% \text { S Columbia, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WMSC Columbia, S. } \\
& \text { KELO Siotix Fails. }
\end{aligned}
$$



Wave Length W．P．

## 5000d WMBN Petoskey，Mich．

 5000d WEXL Royal Oak，Mich． 0．00d KDLm Detroit Lakes，Minn． 000d WEVE Eveleth，Minn． 000d KROC Rachester，Minn． KWLM Wilimar，Minn． WJMB Brookhaven，Miss． WAML Laurel，Miss． KXEO Mexico，Ho．KSMO Salem，Mo． KSMO Salem，Mo．
KICK Springfield，Mo KCAP Helena，Mont． KPRK Livingston；Mont． KATL Miles City，Mont KQTE Missoula，mont． KFGT Fremont，Nebr KGFW Kearney，Nebr KSID Sidney，Nebr
KORK Las Vegas． KBET Reno，Nev． WDCR Hanover，N．H． WMID Atlantie City，N．J． KNDE Aztec，N．M． KSIL Silver City，N．
WMBO Auburn． WMBO Auburn，N．Y WJOC Jamestown．N． WUSJ Lockport，N．Y．
WMSA Massena， WMSA Massena，N．Y．
WALL Middletown，N．Y
WIRY Plattsburg，N．Y． WiRY Plattsburg，
WJRI Lenoir．N．C WJRI Lenoir，N．C WTSB Lumberton，N．
WOXF Oxford，N．C． WOOW Washington，N．C．
WGNI Wilmington，N． WGNI Wilmington，N．C． KGPC Grafton，N．D． WNCO Ashland，Ohio WOUB Athens，Ohio WIZE Springfield，Ohio
WSTV Steubenvilie，Ohio KIHN Huge，Okla． KOCY okla．City，okla KLOO Corvallis，Oreg． KIHR Hood River，Oreg．
KFIR North Bend，Oreg． WFBG Altoona，Pa． WCVI Connellsvilile，Pa．
WSAJ Grove Cíty，Pa． WSAJ Grove City，Pa
WKRZ 0il City，Pa． WHAT Philadelphia，Pa． WRAW Reading，Pa
WBRE Wilkes－Barre， WWPA Williamsport，Pa WGRF Agtadilia，P．R．
WOKE Charieston，S．C． WOKE Charieston，S．C．
WRHI Rock Hilf，S．C． WSSC Sumter，S．C
KIJV Huron，S．D． KIV Huron，S．D．
KRSD Rapid City，S．Dak WBAC Cleveland，Tenn． WKRM Columbia，Tenn WGRV Greenvilie，Tenn． WKGN．Knoxvilie，Tenn
WHHM Memphis，Tenn WHHM Winchester，Tenn． KWKC Abilene，Tex．
KAND Corsieana KAND Corsicana，
KSET PI Paso，Tex． KSET EI Paso，Tex KRBA Lufkin，Tex． KVKM Monahans，T
KPDN Pampa，Tex． KOLE Port Arthur，Tex
KTXL San Angefo，Tex． KVIC N．of Victoria，Tex．
WTWN St．Johnsbury，Vt． WTWN St．Johnsbury，
WKEY Govington，Va． WHAP Hopewell，Va． WJMA Orange，Va．
KAGT Anacortes，Wash KPKW Pasco，Wash．
KAPA Raymond，Was
Fla，

5000 WBBQ Augusta，Ga．
WGAA Cedartown，Ga． WOKS Columbus，Ga． WBBT Lyons，Ga WTIF Tifton，Ga KPST Preston，Idaho
WSOY－Decatur，II． WSOY Decatur．Il． WIPF Herrin， 111. W30L Joliet，IIt． WBIW Bedford，Ind．
WTRC Elkhart．Ind． WhBC Muncie，Ind． KROS Clinton，Jowa KLIL Estherville，lowa
KCKN Kansas City，Ka KSEK Pittsburg，Kans． WCMA Ashland，Ky． WBGN Bowling Green，Ky． WNBS Murray，Ky． WEKY Richmond，Ky KYOB Bastrop，ta． KRMD Shreveport，La． WFAU Augusta，Maine WHOU Houlton，Maine WGAW Gardner，Mass
W NBH New Bedford，Mass． WBRK Pittsfleld，Mass． WLEW Bad Axe，Mich． WLAV Grand Rap．，Mich． WCSR Hillsdale，Mich．

KAPA Raymond，Wash．
KMEL Wenatchee，Wash． WHAR Clarksburg，W．Va．
WEPM Martinsburg，W．Va WMON Montgomery，
WOVE Weloh，w．Va． WOVE Weloh，W．Va，
WLDY Ladysmith，wis WRIT Milwaukee，Wis． WFHR Wis．Rapids，
KOWB Laramie，Wyo． KWOR Worland，Wyo 1350－222．1
CHOV Pembroke，Ont CJDC Dawson Creek，
CHGB St．Anne dela

Mex．
 $\because$
．

## ， 1

－

Kc. Wave Length KRNT Des Moines, lowa KMAN Manhattan, Kans. WLOU Louisville, Ky. WSMB New Orleans, La. WDEA Ellsworth, Me. WHMI Howell, Mich. KDIO Ortonville, Minn. WCMP Pine City, Minn. KCHR Charlesten, Mo. KBRX O'Neill, Nebr. WLNH Laconia, N.H. KABQ Alhuquerque, N.M. WCBA Corning, N. Y WRNY Rome, N.Y. WHIP Mooresville, N.C. KQDI Bismarek, N.D. WADC Akron, Ohio
WCHI Chillicothe, ohio KRHD Duncan, okla. KTLQ Tahlequah, Okla. WORK York. Pa.
WDAR Darlington, s.c. WGSW Greenwood, S.C. KTXI Jasper, Tex. KCOR San Ántonio, Tex. WBLT Bedford, Va.
WAVY Portsmouth, Va. WPDR Portage, Wis,

## 1360-220.4

WWWB Jasper, Ala.
WMFC Monroeville, Ala. WELR Roanoke, Ala. KRUX Glendale, Ariz, KFFA Helena, Ark. KRCK Ridpecrest, Calif. KGB San Diego, Calif. WOBS Jacksonville, Fla WKAT Miami Beach, Fla WIOD Sanford, Fla. WINT Winter, Haven, Fla WAZA Bainbridge, Ga. WLAW Lawrenceville, Ga. WVMC Mt Carmel, II KXGI Ft. Madison, lowa KSCJ Sioux City, lowa KBTO El Dorado, Kans WFLW Monticello, Ky.
KDBC Mansfield, La. KVIM New Iberia, L WEBB Dundaik, Md. WLYN Lynn, Mass. KKMI Kalamazoo, Mich. WNN Nown Nrove, Mo WNNJ Newton, N.J. WWBZ Vineland, N.J. WMNS Olean, N.Y. WCHL Chapel Hill, N. C. KEYZ Williston, N.D. WSAT Gincinnati. Ohio WWOW Conneaut, Ohio KUIK Hilisboro, Oreg. WMCK McKeesport, Pa. WPPA Pottsville, Pa WLCM Lasley, S.C. W NAH Nashville, Tenn. KRAY Amarillo, Tex. KACT Andrews, Tex. KWBA Baytown, Tex. KRYS Corpus Christi, Tex.

## KXOL Ft. Worth, Tex.

WBOB Galax, Va.
KFDR Grand Coulee, Wash KMO Tacoma, Wash.
WHBC Matawan, W.Va. WBAY Green Bay, Wis WISV Virouqua, Wis. WMNE Menomonie, Wis.

1370-218.8
WBYE Calera, Ala KEEN San Jose, Calif. KGEN Tulare, Galif WHYS Oeala, Fla.
WCOA Pensacola, FIa, WBGR Jesup, Ga.
WFDR Mançhester, Ga. WKLE Washington, Ga WPRC Lincoln, III. WGRY Gloomington, Ind. KDTH Dubuque. I KGNO Dodge City, Kans KGNO Dodge City, Ka
WGOH Grayson, Ky. KAPB Marksyille, La WGHN Grand Havon Mish WGHN Grand Haven, Mich KSUM Fairmont, Minn KWRT Boonvile, Me.
W.P. Ke. WaveLength 5000 KCRV Caruthersville, Mo. 500 d
5000d
KAW B Butte, Mont.

5000 WFEA Manchester, N.H. t000d WALK Patchogue, N.Y. 500 WSAY Rochester, $N_{\text {. }} Y_{\text {. }}$. \begin{tabular}{l|l}
I000d <br>
I000d \& WTAB Gastonia, N.G. <br>
Wabor City, N.C.

 

I000d WTAB Tabor City, N.C. <br>
5000 C \& KFJM Grand Forks, N.D.
\end{tabular} 5000d KFJM Grand Forks,

1000 d
WSPD Toledo, Ohio
1000d KAST Astoria Oreg.
5000 d W0TR Corry, Pa, I000d $\begin{aligned} & \text { WPAZ Potistown, Pa. } \\ & \text { WKMC Roaring Sprgs., Pa. }\end{aligned}$ 500d WIVV Vioques, P.R. 1000d WDEF Chattanooga, Tenn. 500 d WDXE Lawrenceburg, Tenn. 5000 WRGS Rogersvilie, Tenn.
W.P. W $Y . P$
000 d
5000
500 d
5000
500 d

000 d
5000
1000
5000
1000
500 d
5000
5000
500 d
500 d
5000 d
5000
5000
1000 WBNY Buffalo, N.Y. 500d KOKE Austin, Tex. 250 KFRO Longview. Tex 1000 d KUKO Post, Tex. 5000 KSOP SaIt Lake city, Utah 500d WBTN Bennington, Vt tan 1000 d I000d WHEE Martinsville, Va.
 1000 d KPOR Quincy, Wash.
5000 WMOD Moundsville, W.Va. l000d WCCN Neillsville, Wis. 5000 d KVWO Cheyenne, Wyo. 1000 5000 1000 d 1380-217.3

CFDA Victoriaville, Que. CKPC Brantford, Ont.
CKLC Kineston, Ont $\begin{array}{ll}1000 d \\ 1000 d & \text { WGYV Greenville, Ala. } \\ \text { KGXE N. Little Rock, Ark. }\end{array}$ 5000 KBVM Lancaster, Calif. 500 d
1000
KGMS Sacramento, Calif. 1000 KSBW Salinas, Calif. 1000 KFL] Walsenburg, Colo. WLIZ Lake Worth, Fia. WQXQ Ormond Beh., Fla 5000 d WLCY St. Petersburg, FJa, WAOK Atlanta, Ga. 500d WRWH Cleveland, Ga. I000d KPOI Honolulu, Hawas l000d WITE Brazil, Ind. 000d
500d KCIM Ft. Wayne, Ind. 500 d WNTA Centraf City, Ky. $\operatorname{lo00d}$ WWKY Winchester, KY. 10000 WYNK Baton Rouge, La, 500d WKTH Part Huron, Mich 1000 d
1000 d

KLIZ Brainerd, Minn. | $1000 d$ |  |
| :--- | :--- |
| $1000 d$ | KAGE Wizainerd, Minn |
| Wino, Minn. |  | 1000d

500 d
WDLT Indianola, Mis $500 d$ KUL Indianola, Miss.

$$
\begin{array}{r|l}
1000 \mathrm{~d} & \text { KWK St. Louis, Mo. } \\
5000 & \text { KUV Holdredge, Nebr. } \\
\text { 1000d } & \text { WRWZ Zarephath, N.J. }
\end{array}
$$

$$
\begin{array}{r|r}
\text { 1000d } & \text { WAWZ Zarephath, N.J. } \\
\text { 500d } & \text { WLOS New York, N.Y. } \\
\text { inn Asheville, N.C. }
\end{array}
$$

$$
\begin{array}{l|l}
\text { 500d } \\
1000 & \text { WLOS Asheville, N.C. } \\
5000 & \text { WTOB Winston-Salem, N.C. } \\
\text { wWIZ Lerain. Ohin }
\end{array}
$$

$$
\begin{array}{r|l}
5000 & \text { WWIZ Lorain, Ohio } \\
1000 d & \text { WPKO Waverly, Ohio }
\end{array}
$$

$$
\begin{array}{l|l}
\text { 1000d } & \text { WWIZ Lorain, Ohio } \\
\text { 1000d } & \text { KSWO Waverly, Ohio } \\
\text { KSO Laton. Okla. }
\end{array}
$$

$$
\begin{array}{l|l}
0000 \\
5000 & \text { KSWO Lawton, Okla. } \\
5000 & \text { KRUS Muskogee, OkJa. }
\end{array}
$$

$$
\begin{array}{l|l}
5000 & \text { KBUS Muskogee, OkJa. } \\
500 \mathrm{KBCH} \text { Ocean Lake, Oreg. }
\end{array}
$$

$$
\begin{aligned}
& \text { suvu KBCH Ocean Lake, Oreg } \\
& \text { 500d } \\
& \text { KSRV Ontario, Oreg. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 500d KSAV Ontario, Oreg. } \\
& \text { 1000d } \\
& \text { WACB Kittanning, Pa }
\end{aligned}
$$

$$
\begin{array}{l|l|}
\hline 000 \mathrm{WACB} \\
1000 & \text { WATtanning, Pa. } \\
1000 & \text { WAP Waynesboro, Pa. }
\end{array}
$$

$$
\begin{array}{l|l}
1000 & \text { WAYZ Waynesboro, Pa. } \\
1000 & \text { WNRI Woonsocket; R.I. }
\end{array}
$$

$$
\begin{array}{c|c}
1000 & \text { WNRI Woonsocket, R.I. } \\
\text { 1000d } & \text { WAGS BishopvilIe, S.C. }
\end{array}
$$

$$
\begin{array}{l|l}
\text { 10u0d } & \text { WAGS Bishopville, S.C. } \\
\text { 1000d } & \text { KOTA Rapid City, S.Dak. }
\end{array}
$$

$$
\begin{array}{r|r|}
\text { To00d } & \text { KOTA Rapid City, S.D } \\
\text { 1000d } & \text { KJET Beaumont, T ex. } \\
\text { 500d }
\end{array}
$$

$$
\begin{array}{r|r}
500 \mathrm{~d} & \text { KBWD Brownwood, Tox. } \\
1000 \mathrm{~d} & \text { KCRN Grane. Tex }
\end{array}
$$

$$
\begin{array}{r|r}
1000 \mathrm{~d} & \text { KBW Brownwood, } \\
1000 & \text { KTSM Erane, Tex. } \\
\text { KI Paso. Tex }
\end{array}
$$

$$
\begin{array}{l|l}
1000 & \text { KTSM El Paso, Tex. } \\
1000 & \text { KMUL Muleshoe. Tex }
\end{array}
$$

$$
\begin{array}{l|l}
1000 & \text { KMUL Muleshoe, Tex. } \\
5000 & \text { KBOP Pleasanton, TEX, }
\end{array}
$$

$$
\begin{aligned}
& \text { K000 KBOP Muleshoe, TEX. } \\
& \text { (000d WBYB Rleasanton, Tex. }
\end{aligned}
$$

$$
\begin{array}{l|l}
\text { KOOP Pleasanton, T } \\
\text { l000d } \\
5000 \mathrm{~W} & \text { WYB Rutland, Vt. }
\end{array}
$$

$$
\text { WMBB Ruriana, } \text { WM }
$$

$$
\begin{aligned}
& \text { WMBG Richmond, Va. } \\
& \text { KRKO Everett, Wash. }
\end{aligned}
$$

$$
\begin{array}{r|rl} 
& \text { KUud } \\
5000 & \text { KRKO Everett, Wash } \\
\text { WBEL Beloit, Wis. }
\end{array}
$$

$$
\begin{array}{r}
500 \mathrm{~d} \\
1000 \mathrm{~d} \\
100 \mathrm{~d}
\end{array}
$$

$\square$

## 1390-215.7

$\square$
1000 d 1000

CKLN Nelson, B.C. KDON ABniston, Ala,
 500 d
5000
1000 d
5000 d
1000 d
5000
1000
1000
1000 d
1000 d
1000
5000
1000 d
1000 d
1000 d
1000
500 d
1000 d
500 d
1000 d
1000 d
1000 d
1000 d
5000 d
1000
1000

1000

$$
\begin{aligned}
& 100 \\
& 1000 \\
& 500 \\
& 1000 \\
& 1000 \\
& 1000 \\
& 100 \\
& 500
\end{aligned}
$$

$$
\begin{aligned}
& 100 \\
& \text { 100 } \\
& \text { 1000 } \\
& \hline 000
\end{aligned}
$$

5000
000 d
1000 d

| 1000 |
| :--- |
| 50 |
| 100 |
| 5 |

5000 KCLA Pine Bluff, Ark.
000 K KE Berkeley, Calif.
1000 KREO indio, Calif.
500d KSDA Redding, Calif. KSPA Santa Paula, Calit. KHOE Truckee, Calif. KUKI Ukiah, Calif
KONG Visalia Ca KONG Visalia, Calif.
KRLN Ganon Gity, CoIo. KDTA Delta, Colo. KFTM Ft. Morgan, Colo. KBZZ La Junta, Colo. WILI Willimantic, Conn WFTL Ft. Lauderdale, Fla. WIRA Ft. Pierce, Fla. WPRY Perry, Fla. WTRR Sanford, Fla. WCOS Alma, Ga. WSGC Elberton, Ga. WNEX Macon, Ga.
WMGA Houltrie, Ga. WCOH Newnan, Ga. WGSA Savannah, Ga. KART Jerome, Idaho KRPL Moscow, Idaho KSPT Sandpoint, Idaho WDWS Champaign, III. WGIL Galesburg, III. WEOA Evansville, Ind WBAT Marion, Ind. KCOG Centervilie, Iowa KVFD Fort Dodge, lowa
KVOE Emporia, Kans. KAYS Hays, Kans. WCYN Cynthiana, Ky.
WIEL Elizabethtown, Ky WIEL Eilizabeth, Ky. WFPR Hammond, L KAOK Lake Charles, La WRDO Augusta, Maine
WIDE Biddeford, Maine WWIN Baltimore, Md. WALE Fall River, Mas WLLH Lowell. Mass WHMP Northampton, Mass. WELL Battle Creek, Mieh. WHDF Houghton. Mish WMAB Munising, Mich. 1000 1000
5000
500 5 WSJM St. Joseph, Mich. WEYL Traverse City, Mich. KMHL Marshall, Minn. WMiN Mpls.-St. Paul, Minn. WBiP Boonevilie, Miss. WNAG Grenada, Miss WFOR Hattiesburg, Miss. Wjas Jackson, Miss.
KFRU Columbia KFRU Columbia, Mo. KTTS Springfield, Mo. KXGN Glendive, mont. KARR Great Fais, mont
KCOW Alliance, Nebr. KLIN Lincoln. Nebr. KBMI Henderson, Nev.
KWNA Winnemucea, Nev. KWNA Winnemucea,
WTSL, Hanover, N.H, WTSL Hanover, N.H, KCHS Truth or Consequences, New Mexico KTNM Tucumeari, N. Mex 5000 WABY Albany, N.Y
 250
 KOMB Gottage Grove, WEST Easton, Pa

## WHGB Harrisburg, Pa,

 WJAC Johnstown, Pa.WKBI St. Marys, Pa. WICK Scranton, Pa, WRAK Williamsport, Pa.
WHOA Sal luan WHOA San Juan. P.R.
WPCC CIInton, S.C. WCOS Columbia, S.C. WGTN Georgetown, S.C.
WTHE Spartanburg, S.C. WTHE Spartanbarg, S.C.
WJZM Clarksville, Tenn. WHUB Cookeville, Tenn;
WLSB Copper Hili, Tenn WKPT Kingsport, Tenn. WGAP Maryvilie, Tenn.
WHAL Shelbyvilte, Tenn. KRUN Ballinger, Tex. KBYG Big Spring, Tex.
KUNO Corpus Christi, Tex KILE nr, Galveston, Jex. KGVL Greenville, Tex.
KEBE Jacksonvilie, Tex. KIUN Pecos, Tex. KEYE Perryton, Tex.
KVOP Plainview, Tex KDWT Stamford, Tex. KTEM Temple, Tex, KVOU Uvalde, Tex.
KIXX Provo, Utah WDOT Burlington, Vt. WiNA Charlottesvilie, Va.
WLOW Portsmouth. Va. WHLF So. Boston, Va. WiNC Winchester, Va.
KWLK Longview, Wash. KRSC Othello, Wash. KTNT Tacoma, Wash.
WBOY Clarkesburg, W. Va. WRON Ronceverte, W. Va.
WKWK Wheeling, W. Va. WBTH Williamson, W.Va WATW Ashland, Wis;
WBIZ Eau Claire, Wis WDUZ Green Bay, Wis WRJN Racine, Wis.
WRDB Reedsbure. WRIG Wausau, Wis. KATI Caspar, Wyo.
KODI Cody, Wyo.

## $1410-212.6$

| CFUN Vancouver, B.C. | 10000 |
| :---: | :---: |
| WALA Mobile, Ala, | 5000 |
| KTCS Fort Smith, Ark. | 500d |
| KERN Bakersfield, Calif. | 0 |
| KRML Carmel, Calif. | 500 d |
| KMYC Marysville, Calif. | 5000 |
| KCAL Redlands, Calif. | 1000 d |
| KCOL Ft. Collins, Colo. | 1000 |
| WPOP Hartford, Conn. | 5000 |
| WDOV Dover, Del. | 1000 d |
| WMYR Fort Myers, Fla, | 5000 |
| WBIL Leesburg, Fla. | 1000 d |
| WDAX meRae, Ga. | 1000 d |
| WLAQ Rome, Ga. | 1000 |
| WRMN Elgin, III. | $500 d$ |
| WTIM Taylorville, Ill. | 10008 |
| KGRN Grinnell, Iowa | $500 d$ |
| KLEM LeMars, Iowa | $1000 d$ |
| KCLO Leavenworth, Kans. | 5000 d |
| KWBB Wichita, Kans. | 5000 |
| WLBJ Bowling Green, Ky. | 5000 |
| WHLN Harlan, Ky, | $5000 d$ |
| KDBS Alexandria, La. | 1000 d |
| WGRD Grand Rap., Mich. | 1000 d |
| KLFD Litchfield, Minn. | 500d |
| WDSK Cleveland, Miss. | 1000d |
| WBKN Newton, Miss, | 500d |
| WHTG Eatontown, N.J. | 500 d |
| WDOE Dunkirk, N.Y. | 500 |
| WEGO Concord, N.C. | 4000d |
| WSRC Durham, N.C. | $1000 d$ |
| WING Dayton, Ohio | 5000 |
| KPAM Portland, Oreg. | 5000d |
| WLSH Lansford, Pa. | 10008 |
| KQV Pittsburgh, Pa. | \%000 |
| WYMB Manning, S.C. | 10004 |
| WCMT Martin, Tenn. | 1000 d |
| KBUD Athens, Tex. | 1000 d |
| KBAN Bowie, Tex. | 5004 |
| KVLB Cleveland, Tex. | 500 |
| KXIT Dalhart, Tex. | 500d |
| KADO Marshall, Tex. | 500 |
| KRIG Odessa, Tex, | 1000 | KAMO Rogers, Ark. KGER Long Beach, Calif. KTUR Turlock, Calif. 1000 d

1000 1000 WAVP Avon Park, Fla. 5000 WGES Chicago, III.
1000d WFiCD Fairfield, IIt. 5000 WCCD Seymour, Ind. I000d KCBC Des Moines, lowa 1000d KNCK Coneordia, Kans. 1000 d WANY Albany, Ky. 1000 d WKIC Hazard, Ky. 500 d KNOE Monroe, La, 5000
500 d
WPA
WPM Plymouth, Mass. 1000 WCER Charlotte, Mich. KRFO Owatonna, Minn. 5000
5000 d 5000 d
1000 d 1000 d

1000 d | 500 d |
| :---: |
| 1000 | 1000 WEOK Poughkeepsie, N.Y. 1000d WFNC Fayetteville, $\mathrm{N}, \mathrm{C}$

Rc. WčelLength KBAL San Saba, Tex WHIS Roaneke, Va. WKBH LaCrosse, Wis.

## 1420-211.1

CKPT Peterborough, Ont. CKOT Chicoutimi, Que. WACT Tuscaloosa Ala. KHFH Sierra Vista, Ariz. KPOC Pocahontas. Ark WLIS Old saybrook, Conn WBRD Bradenton, Fla. WDBF Deitray Beach, Fla WAVO Avondale Estates, Ga WREL Columbus, Ga. WINI Murphysboro, III. WOC Davenport, lowa KJCK Junction City, Kans. WHCR Ashiand, Ky. WYEL Owensboro, Ky. WPSM Nayetedifori, Mass. WBEC Pittsfield, Mas KTOE Mankato. Minn. WSUH OXford, Miss.
WRBC
Vicksurs. KBTN Neosho, Mo KOOO
WALY Maha, Nebr.
Hertimer, N. WACK Newark N.Y. WMYN Mayodan, N.C. WVOT Wilson, N:C. KHK Cleveland, oh KYNG coos Bay, oreg. WCED DuBois. Pa. WEUC Pance, P. R. WCRE Cheray, S.C. WEMB Erwin Ten WKSR Pulaski, Tenn. KTRE Lufkin, Tox KGNB New Braunfols, Tex. WWSR St. Albans, $v t$ WDDY Gilouesster, Va. WKCW Warrenton, Va. KUJ Walla Walla, Wash.

## 1430-209.7

CKFH Toronto Ont. WFHK Pell City, Ala. KAMP EI Centro, Calif. KARM Fresno, Calif. KOSI Aurora, colo. WSOB Homestead, Fla WPCF Panama City, Fla. WGFS Covington, Ga. WWGS Tilton, Ga WCMY Ottowa Ga WIRE Indianapolis, Ind. KASI Ames, lowa KMRC Morgan City. La. WHAL Annapolis. Md. WHIN Medford, Ma WBRB Mt. Clemens, Mich. WLA St. Louis, Mo. KRG1 Grand island, Nebr. WNAR Newark N. ${ }^{\text {W. }}$
WENE Endicott. WMNC Morganton
WRXO Roxboro. N.C. WFOB Fostoria, Ohio WCLT Newark, ohio KALV Alva, okla. KTUL Tulsa, Okia. WVAM Altoona, Pa. WFRA Franklin, Pa. WBLER Batesburg, S.C WATP Marion, S.c. KBRK Brookings, S. Dak. WENO Madison, Tenn. WHER Memphi's, Tenn. KSIJ Gladewater. Tex. $\mathbf{K C O H}$ Houston. Tex KLO Ogden, Utah WEIR Weirton W, Wash.

$W . P$
500 d
500
5000 d
5000
1000 1 1
$W$
$k$
$k$ 440-208.2 FCP Courtenay, B.C. KOKY Scottsdale, Ariz. KYON Napa Rack, A KPRO Riverside, Calif
1000
5000
5000
5000 d
1000 d
1000 d
1000 d
1000
1000
500 d
1000

## $1000 d$ 500 d

5000
1000
5000
10000
5000 d
1000 d
10 10
500
5000
5000
1000 d
1000
500
$\begin{array}{r}500 \\ 1000 \\ \hline\end{array}$
500
$500 d$
1000
5000
10000
10000
1000
500
5000
1000
1000
1000 a
$1000 d$
1000 d
5000
100
250
100

## 100

10000
10000
1000
5000
5000 d
5000
500 d

5000
1000 d
1000 d
1000 d
1000 d
5000
500
500

500
500
500
$\begin{array}{r}500 \\ 1000 \\ \hline\end{array}$

5000
500
1000
500

5000

5000
10
50 500

1000 d

## 186

Kc. Wave Length WMIQ Iron Mtn., Mich 1000 WKLA Luas in fon, Mich. WHLS Port Huron, Mich. KATE Albert Loa, Minn. KBUN Bemidji, Minn. KBMW Breckenridge, Minn. WELY EIY, Minn
KFAM St. cloud, Minn. WROX clarksdale, Miss. WCJU Columbia, Miss WOKK Meridian, Miss. WNAT Natchez, Miss WROR West Point, Miss. WMBH Joplin Mo.
KOKO Warrensburg, Mo.
KWPM West Plains,' Mo.
KXX Gozeman, Mont.
KXLL Missonla, Mont.
KWBE Beatrice, Nebr.
KGSR Chadron, Nehr
KONE Reno, Nev.
WKXL Concord, N.H. WCTC New Brunswick, N. KLOS Albuquerque, N. Mex. KLMX Clayton, N.Mex. KOBE Las Cruces, $N$, $\begin{aligned} & \text { Hex } \\ & \text { KENM Portales, }\end{aligned} . \begin{aligned} & \text { Mex. }\end{aligned}$ WHDL Allegany N.Y.
WCLI Corning, N.Y
WWSC Glen Falls, WWSC Gien Falls,
WHDL 0lean, $\mathbf{Y}$, N.Y. N.Y. WKIP Poughkeepsie,
WKAL Rome. N.Y. WATA Boone, N.Y. WGNC Gastonia, N.C WHVH Henderson, N.C.
WHKP Hendersonvilie, N.C. WHIT New Bern, N.C WMOH Dover, Ohio WLEC Sandusky, Ohio KWHW Altus, Okla.
KSIW Woodward, okla
KWRO Coquille, Oreg.
KFLW Klamath Fails, Oreg.
KEBM La Grande, Oreg.
WLEU Erie, Pa.
WGET Gettysburg, P
WDAD Indiana, Pa.
WPAM Pottsville, P
WMPT So, Williamsp
WMPT So. Williamsport, Pa.
WIPA Washington, Pa. WNEL Caguas, P.R WWRI W. Warwick, R.I.
WQSN Charleston, S.C. WGRS Greenwood, S.C.
WMYB Myrtle Beaeh. WHSC Hartsville, S.C.
KBFS Belle Fourehe, ${ }^{\text {S.Da }}$
KYNT Yankton, S.Dak.
WLAR Athens, Tenn:
WOGA Chattanooga, Tenn.
WDSG Dyersburg, Tenn.
WGNS Murfreesboro, Tenn. KRIC Beaumont, Tex. Tex KBEN Garrizo Sprgs. KBBI Gonzases, Tex.
KCYL Junction, EX
KMHT Marshall Tex
KCMR McCamey, Tex.
KNER PaCamey, Tex.
KSNY Snyder, Tex.
KURA Moah, Utah
KEYY Provo, Utah
KDXU St. George, Utah
WSNO Barre, Vt.
WFTR Eratieboro, Vt ${ }_{\text {Wat }}$
WREL Lexington, Va.
WLPM Suffolk. Va,
KBKW Aberdeen, Wash.
KCLX Colfax, Wash
KRSC Othello, wash.
KONP Port Angeles, Wash.
WPAR Parkersburg W. V KFIZ Fond du Lae wis. WDLB Marshfield $W$ is. WPFP Park Falls. Wis WRCO. Richland Center, Wis.
KBBS Buffalo, Wyo.

## 1460—205.4

CKRB Ville St. Georges,
Quebec
Sask. CJNB N. Battleford,
WFMH Cullman. Ala WPNX Phenix City, Ala KCCL Paris, Ark.
KTYM Inglewood, Calif.
KDON Salinas, Calif.
KYSN Colo. Sprgs., Colo.
W.P. $+\boldsymbol{K}$

$\qquad$ | 250 |
| :--- |
|  |
| 50 | WZEP DeFue Length ${ }^{*}$ WMBR Jacksonville, Fla WDMF Buford, Ga. WKAM Goshen, Ind. WOCH North Vernon, Ind. KCRB Chanute, Kans. WRVK Mt Vermon, K WRVK Mt. Vernon, Ky.

WAIL Baton Rouge, La. WBET Brockton, La. WBET Brockton, Mass.
WBR Big Rapids, Mich. WPON Pontiac, Mich. KDMA Montevideo, M KÁLY St. Charles $\begin{array}{ll}\text { WELZ Belzoni, Miss. } & 1000 \mathrm{~d} \\ \text { KADY St. Charles, Mo. } & 5000 \mathrm{~d} \\ \text { KRNY Kearney, Nebr. } & 5000 \mathrm{~d}\end{array}$ KRNY Kearney, Nebr. 5000d WOKO Albany, N. Y WYOX New Rochelle, N.Y. 500 d WHEG Rochester, N.Y. N.C. 10000 $\begin{array}{ll}\text { WMMH Marshail, N.C. } & 5000 \\ \text { WBNS Columbus, Ohío } & 5000\end{array}$ WPVL Painesville, Obio 500 d
KPLK Dallas, Oreg. KPLK Dalias, Oreg. WMBA Ambridge, P WCMB Harrisburg, WBCU Union, S.C. WJAK Jackson, Tenn. 100 $\begin{array}{ll}\text { WEEN Lafayette, Tenn. } & 1000 \\ \text { KBRZ Freeport, Tex. } & 500\end{array}$ KL.L.L. Lubbock, Tex. WAGO Waco, Tex. WPRW Manassas, Va.
WRAD Radford, Va. KIMA Yakima, Wash.
$1470-204.0$
CHOW Welland, Ontario CFOX Pointe Claire, Que. WBLO Evergreen, Ala. KBEXX Coalinga, Calif KUTY Palmdale, Calif KXOA Sapramento Calif.
WMMW Meriden, Conn WPOM Pompano Beach, Fla 1000 d WDCL Tarpon Sprgs., Fla. 5000d WAAG Adel, Ga. WCLA Claxton, Ga WRGA Rome, Ga, WCBC Anderson, Ind KTRI Sioux City, lowa KTRI Sioux City, lowa 50 $\begin{array}{lc}\text { KARE Atehison, Kans. } & 1000 \\ \text { WSAC Fort Knox, Ky. } & 10004\end{array}$ $\begin{array}{lc}\text { KPLC Lake Charies, La. } & 5000 \\ \text { WLAM Lewiston, Maine } & 5000\end{array}$ WIDY Salishury, Md. WTTR Westminster, Md. 1000 d
WSRO MarIborough, Wass WNBP Newburyport, Mass. 500 d $\begin{array}{ll}\text { WKMF Flint, Mieh. } & 1000 \\ \text { WKLZ Kalamazoo, Mich. } & 500\end{array}$ KANO Anoka, Minn. $\quad$ I000d
WCHJ Brookhaven, Miss. WNAL New Albany, Miss. $\quad, 500 \mathrm{~d}$ KGHM Brookfield, Mo. $\quad 500 \mathrm{~d}$
KTCB Malden, Mo. $\begin{array}{ll}\text { KTCB Malden, Mo. } & 1000 d \\ \text { WTKO Ithaea, N.Y. } & 10000\end{array}$ WPDM Potsdam, N.Y. 1000 d
WBIG, Greensboro, N,C. $\quad 5000$ WPNG Greensboro. N, WTOE Spruce Pine, N.C. 10000
WOHO Toledo, Ohio KVLH Pauls Valley, Okia. 250 d KYIN Vinita, OKla. WSAN Allentown, Pa, $\quad 5000$ WOlC Columbia, S.C. 1000 a WEAG Alcoa T, S. WHER Memphis, Tenn WVOL Nashville, Tenn. 1000 $\begin{array}{ll}\text { KWRD Henderson, Tex. } & 500 \mathrm{~d} \\ \text { KGNY San Marcos, Tex. } & \text { 250d }\end{array}$ KELA Centralia, Wash. $\quad 5000$ KSEM Moses Lake, Wash. 5000
WPLH Huntington, W.Va. 5000 d
WBKV West Bend, Wis. KTWO Casper. Wyo.

1480-202.6

## WABB Mobile, Ala.


$1000 d$
5000
5000
$1000 d$
000d 1000 d 500 d 5000 500 d 5000 1000 500 500
000 0

0
500 d
5000 $000 d$ 500 d 1000 d 1000
500 d
5000 5000
500 d
$500 d$
1000 1000 d 1000 d
500 d $1000 a^{2}$ 1000
1000 d


 1000
5000 5000
5000
1000 d 1000 d
5000 000
0000
0.


00 d









5000 d1000d
1000 d




5000 WKEI Kewanee II
5000d WCVS Springfield, ill
500d WANE Fi. Wayne, Ind. 5000 d WAOV Vircennes. Ind. 1000d KPIG Codar Rapids, Jowa
1000d
5000 d WTCO Camphellsvilie. Ky.

| c. Weve Length |  | (c) No Lengrh |  | KC. Nive Len |  |  | Ware Leng | M.P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KYOK Houston, Tox. | 5000 | KLAK Lakewood, Colo. | 1000 | KLVI Vivian, La. | 500 d | KUSH | Cushing, Okla. | 1000d |
| KCBG Lubbook, Tex. | 1000 | WKEN Dover, Del. | 500d | WINX Rockville, Md. | 1000 | KASH | Eugene, Oreg. | 1000 |
| K8U8 Mexia, Yex. | 500d | WKTX Atlantic Beach; Fla. | 1000d | WBOS Broakline, Mass. | 5000 |  | Alentown, Pa. | 500d |
| KTOD Sinton, Tex. | 1000 d | WKWF Key West, Fla. | 500 | WTYM East Longmeadow, |  | WEZN | Elizabethtown, $\mathrm{Pa}_{\text {a }}$ | 500 d |
| WEZL Rfchmond, Va. | 5000d | WHEW Riviera Beach, Fla. | 1000d | Mass. | 5000d |  |  | 1000d |
| KTiX Seattle, Wash. | -5000d | WOKB Winter Garden, Fla. | 1000d | WHRV Ann Arbor, Mich | 1000 | WGUS | N. Augusta, S.C. | 500 |
| WSWW Platteville, Wis. | 1000d | WGKA Atlanta, Ga. | 1000d | WTRU Muskegon, Mieh. | 5000 | WHBT | Harriman, Tenn. | 5000 d |
| WTRW Two Rivers, Wis. | 1000 d | WCGO Chicago Hgts., Ill. | 1000d | WKDL Clarksdale, Miss. | 1000 d | WKBJ | Milan, Tenn. | 1000d |
| KCHY Cheyenne, Wyo. | 1000 d | W MCW Harvard, 11 . WBTO Linton, Ind. | 500d | KATZ St, Louis, Mo. KTTN Trenton, Mo. | 5000 $500 d$ | $\begin{aligned} & \text { KBBB } \\ & \text { KBOR } \end{aligned}$ | Borger, Tex. ${ }^{\text {Brownsville, }}$ Tex. | 500d |
|  |  | WARU Peru, Ind. | 1000d | KNCY Nebraska City, Nebr. | 500d | KWEL | Midland. Tex. | 000 |
|  |  | KLGA Algona, Iowa | 5000 d | $\mathbf{W}$ | $\begin{array}{r} 1000 \mathrm{~d} \\ 5000 \end{array}$ | KCFH | Cuero, Tex. | 500d |
| Niagara Falls, Ont. | 5000 | KCRG Cedar Rapids, Iowa | 5000 | $\mathbf{W}$ | 1000 d | KMAE | inney, Tex. | 000.d |
| WEUP Huntsville, Ala. | 5000d | KMDO Ft. Scott, Kans. | 500 d | WIDU Fayotteville.N.C. | 1000 d | K | range, Tex. | 00 |
| WAPX Monteomery, Ala. | 1000 | WNES Central City, Ky. | 500d | WFRC Reidsville, N.C. | 1000 |  | Centerville, Utah | 000 |
| KGST Fresno, Calif. | 1000d | WSTL Eminence, Ky. | 500d | WKSK W. Jefferson, N.C. | 1000d |  |  | 000 |
| OW Pomona, Cal | 1000 | KFNV Ferriday, La. | 1000d | WBLY Springfield, Ohio | $1000 d$ $500 d$ | W | Wheeling, W.Va, Ripon, Wis. | $5000$ |

## U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co., C: Columbia Broadcasting System, Inc.; M: Mutual Brocdcasting System; N: National Broadcasting Co., Inc.

| Locatlon | C.L. Kc. N.A. | Location C.L.Kc. N.A. | c | C.L. Ke. N.A. | Location | L. Kc. N.A. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abbeville, La: | $\text { KROF } 960$ |  | Atlantic City, N.J. | WFPG 1450 C WLDB 1490 M | Baytown, Tex. |  |
| Abbeville, S.C. | $\begin{aligned} & \text { WABV } 1590 \\ & \text { WAMB } \end{aligned}$ | $\begin{array}{ll}\text { Ambridge, Pa, } \\ \text { Americus, Ga. } & \text { WMBA } \\ \text { W }\end{array}$ |  | $\text { WMID } 1340 \mathrm{M}$ | Beatrice, Nebr. | KWBE 1450 |
| Aberdeen, Md. | WAMB 970 |  | Atmore, | WATM 590 | Beaufort, N.C. | A 1400 |
| Aberdeen, Miss | WMPA 1220 | Ames, Wowa WOI 640 | Attlebore, Mass. | WARA 1320 | Beaufort, S.C. | WBEU 960 |
| Aberdeen, S. Dak. | KSON 930 A | Amherst, N.S. CKDH 1400 | Aubirn, Al | WAUD 1230 A | Beaumont, Tex. | KFDM ${ }_{\text {K }} \mathbf{5 6 0}$ A |
| Aberdeeni, Wash. | KBKW 1450 | Amite, La. WABL 1570 | Auburn, Calif. | KAHI 950 <br> WMBO 1340 M |  |  |
| Abordeeni, | KXRO 1320 M | Amory, Miss, WAMY 1580 Amos, CHAD S40 | Auburn, N.Y. | WMBO 1340 M |  | BM 990 |
| Abilene, Tex. | KRBC 1470 A | Amos, Que. Amsterdam. N.Y. ${ }^{\text {CHAD }} 1340$ WCSS 1490 | Auburn, Wash. | WTWB 1570 | Beaver Dam, Wis. | WBEV 1430 |
|  |  | Amacenda, mont. KANA 1230 | Augusta, Ga. | WAUG 1050 | Beaver Falls, Pa. | WBYP 1230 |
| Abingaon, | WBEI 1230 | Anacortes, Wash, KAGT 1340 |  | WBEE 1340 M | Beckley, W. Va. | S 560 |
| Ada, Oki | KADA 1230 A | Anaheim, Calif. KEZY 1190 |  | WGAA 1290 N |  | WBIW 1340 |
| A | WAAG 1470 | Anchorage, Alaska KBYR 1270 |  |  | Bedf | WBFD 1310 |
|  | WABJ 1490 A | 1550 | Augusta, Maine | WRDO 1400 N | Bed | WBLT 1350 |
| Aguadila, P.R. | WGRF 1340 | Andalusia, Ala. WCTA 920 |  | WFAU 1340 M | Beeville, Tex |  |
| hoskie, N.C. | WRCS 970 | Anderson, ind. WCBC 1470 M | Aurora, Colo. | KOSI 1430 |  |  |
| Alken, S.C. | WAKN 990 | WHBU 1240 C | Aurora, | WMRO 1280 m | Be | WOMP 1290 m |
| kron, O hio | WAKR 1590 A | Anderson, S.C. WANS 1280 M |  | KNOW 1490 A | Bell | WBLF 1330 |
|  | UE 1150 | 1360 |  | KTBC 590 C | Bell F ourche, | KRFS 1450 |
|  | WHLO 640 M | Annapolis; Md. WANN 1190 |  | KOKE 1370 | Belle Glade, | SWN 900 |
| Alamogordo, | Kalg 1230 M | WABW 810 |  | ET 1300 M | Belleville | Q 800 |
|  | KRAC 1270 | WHPV |  | AVP 1390 |  |  |
| amosa, Colo. | KGIW 1450 M | Arbor, Mich. WHRV 1600 A |  | WAVO 1420 | B | KPUG 1170 |
| Albany, Ga. | WALB 1590 A | Anna; IH. WRAJ 1440 |  | KNDE 1340 |  | 790 A |
|  | WJAZ 1050 | Anniston, Ala, WANA 1490 | Baby | WBAB 1440 |  |  |
| bany, | WANY 1390 | WDNG 1450 A |  | W 1340 |  |  |
| Albany, Minn. | KASM 1150 | Anoka, Minn. WHMA 390 |  | WMGR 930 |  | 1380 |
| Albany, N.Y. | WABY 1400 M | Ansona, Minn. Conn. WADS 690 |  | WAZA 1360 |  | WGEZ 1490 M |
|  |  | Antigo, Wis. WATK 900 |  | KBKR 1490 |  | WHPB 1390 |
|  | WROW 590 | Artesia, N.M. KSVP 990 M | Bakersfield, Calif. | KAFY 550 M |  | WELZ 1460 |
| bany, | KWIL 790 M | Antigonish, N.S. CJFX - 580 |  | KBIS 970 | Bemidji, Min | KBUN 1450 M |
|  | KABY 990 | Apoilo, Pa. WAVL 910 |  | F 230 C |  | KGRL $940{ }^{\text {a }}$ |
| Ibemarle, N.C. | WABZ 1010 | Appleton, Wis. WAPL 1570 |  | KUZZ 800. | Bennet | WBSC 1550 M |
|  | WZKY 1580 | Appleton, Wis. WHBL 1230 M |  | KLYD 1350 | Beniningt | WBTN 1370 |
| bert Lea, Minn | WAVE 630 A | Areadia, Fla. WAPG 1480 |  | KMAP 1490 | Benson, Minn. | KBMO 1290 |
| bertvilie; | WALM 1230 | Arcata, Calif. KENL 1340 |  | KPMC 1560 A | Bent | KBBA 690 |
|  | 1350 | Ardmore, Okla. KVSO 1240 A | Baldwinsville, N.Y. | WSEN 1050 | Bent | C |
|  | KDEF 1150 | Arecibo, P.R. WCMN 1280 | Ballinger, Tex. | KRUN 1400 | Benton Har | 0 |
|  | KGGM 610 C | WMIA 1070 | Ba | WBAL 1090 N | B |  |
|  | 0 O 1030 N | K 1230 |  | WBMD 600 |  | WCST 1010 |
|  | KQEO 920 M |  |  | CAM 680 |  | 0 |
|  | ARA 1310 | Arkan. City, Kans. KSOK 1280 |  | FBR 1300 | Berryville, Ark. | TCN 1480 |
|  | KLOS. 1450 | Arington, Fla. WARL 780 |  | ITH 1230 |  | BRX 1280 |
|  |  | WEAM 1390 |  | SID 1010 | Bessemer, Ala. |  |
|  |  | Artesia, N.M. KSVP 990 M |  | WWIN 1400 A-M | Bethesda, Md. | WUST 1120 |
|  | WRFS 1050 | Asbury Park, N.J. WJLK |  |  |  | WGPA 1100 M |
| Alexandria, La. | KALB 580 A | Asheboro, N.C. WGWR 1260 |  | WGUY 1250 C | B |  |
|  | KDBS 1410 |  |  | WLBZ 620 N | B |  |
|  | KSYL 970 N | WSKY 1230 | Banning, Calif | KPAS 1490 | Big Sprg., Te | KBST 1490 A |
| mandrla, Minn. | KXRA 1490 A | WWNC 570 | Barboursville, $\mathbf{K}$ ( | WBVL 950 |  | KHEM 1270 |
|  | WPIK 730 M KLGA 1600 | Ashland, Ky. WCM 1340 C |  | WBRT 1320 |  | KBYG 1400 M |
| gena, ${ }^{4}$ lowa | KLGA 1600 KOPY 1070 | Ashland, Ky. WTGR 1420 | Barnesboro, Pa, | WNCC 950 | Bie Stone Gap, | WLSD 1220 |
| Alice, ${ }^{\text {Allogan, Mich. }}$ | WOWE 1580 | Ashland, Ofio WNCO 1340 | Barnwell S.C. | WBAW 740 | Bijou, Calif. | K0WL 1490 |
| Allent | WHOL 1600 | Ashland, Oreg. KWIN 1400 M | Barre, Vt. | WSNO 1450 | Biloxi, Miss. | WLOX 1490 M |
|  | WAEB 790 | Ashland, Wis. WATW 1400 | Ba | CKBB 950 |  | WPM 570 |
|  | WKAP 1320 | Astrabula, Ohio WICA 970 m |  |  | Brlings, Mont. | KBMY 2490 N |
|  | WSAN 1470 C | Astoria, Oreg. KAST 1370 M | Bartow, Fla. | $\text { WBAR } 1460$ |  | 00K 970 C |
| Allance, Nobr | KCOW 1400 |  | Bastrop, La. | KTRY 730 |  | KOYN 910 |
| Alliance, Ohio | WFAH 1310 | Atchison, Kans. WJME 730 | Bastrop, La. | KVOB 1340 |  | KURL 730 |
| ma, Mich | WCOS 1400 | Athens, Ala. WGAU 1340 C Athens, |  | STA 1490 M | ghamton, N.Y. | WINR 680 N |
| ma, Mich | WFYC 1280 | WDOL 1470 | Batesburg, S.C. | (BLR 1430 |  | WKOP 1360 M |
|  | WATZ 1450 | WRFC 960 | Batesvilie | KBTA 1340 |  | WNBF 1290 C |
| Alpi | KYLF 1240 m | Athens, Ohio - WATH 970 | Batesville, Miss. | WBLE 1290 | Birmingham, Ala, | WAPI 1070 N |
| Alten, Ill. | WOKZ 1570 | WOUB 1340 | Bath, Maine | WMMS 140 |  | WBRG 960 |
| Attona, Man. | CFAM 1290 | Athens, Tenn. WLAR 1450 M | Bato |  |  | 1260 A |
| Altoena, Pa, | WFBG 1340 N | Athens, Tex. ${ }^{\text {K }}$ WPD 1410 c |  |  |  | E |
|  | WRTA 1240 A | Atlanta, Ga. WPLo 590 C |  | WIBR 1300 |  | 1320 M |
|  | WVAM 1430 C |  |  | JBO 1150 N |  | ATV 900 |
| Alturas | CNO 570 | D 860 |  | CS 910 |  | WSGN 610 |
| Us, | KWHW 1450 |  |  | WXOK 1260 |  | WYDE. 850 |
| arillo. Tex. | KALV 1430 , | WGST 920 A | Battle Creek, Mich. | h.WBCK 930 |  | WVOK 690 |
| arillo,.Tex. |  | WIIN $970{ }^{\circ}$ |  | WELL 1400 A | Bisbee, Ariz. | KSUN 1230 A |
|  | KFDA 1440 A | WQXI 790 | Baxiey, Ga. | WHAB 1260 | Bishop, Calif. | KIBS 1230 A |
|  |  | B 750 N | Bay City, Mith. | WBCM 1440 | Bishopville, S.C. | WAGS 1380 |
|  | KRAY 1360 | WYZE 1480 W |  | WWBC 1250 | Bismarck, N.Dak. | KFYR 550 |
|  |  | Atlanta, Tex. KALT 900 | Bay City, Tex. | 10X 1270 |  |  |
|  |  | Atlantle, lowa KJAN 1220 | Bay Minette, Al | BCA 1150 | Bismarck-Mandan, |  |
| 170.WH | DIO LOG | Atiantic Beach, Fla, W KTX 1600 | Bayamon, P.R. | WENA |  | 80 |

Location
Black River Falls,
Blaekfoot, Idaho Blackstone, Va. Blakely, Ga. Blind River, Ont Bloomington, III, Bloomington, Ind Bloomsburg, Pa .

Bluefleld. W.Va
Blythe, Calif: Blytheville. Ark Bogalusa, La

Boise, ldaho

Bonham, Tex

Boone, N,C. Boonvilie, Ind. Boonvilie, Mo Booneville, Miss
Boonville, N.Y. Borger, Tex.

Bossier City, La,

Bowider, Colo.
Bowie, Tex.
Bowling Green, Ky.
Bowl. Green, Ohio
Bowl. Green,
Bozeman, Mont
Bradhury Hats KBMN 1230
Braddock Pa.s Mo. WPGC1580
Bradenton, Fla.
Bradford, Pa.
Brady, Tex
Brampton, Ont.
Brandon, Man
Brattleboro, Vt.
Brawley, Calif.
Brazil, ind.
Breckenridge, Minn. Bremenridge,
Bremerton, Wash. Brevard, N. C
Brewton, Ala.
Bridgeport, Conn.
Bridgeton, N.J. Bridgewater, N.S. Brighton, Colo. Brinkley, Ark. Bristol, Conn. Bristol, Tenn. Bristol, 有

Brockton, Mass. Brockvilie, Ont. Brookfleld, Mo. Brookhaven, Miss.

Brookings, Oreg. Brookings, S.Dak Brookline, Mass. Brook N. F: Brownfield Tex Brownsyille Tex Brownsvilie, Tex.

Brunswick, Ga.

## Brunswick, Maine

Buffalo, N.Y.

Buffalo, Wyo.
Buford, Ga.
Burbank, Calif
Burlington, lowa
Burlington, N.C.
Burlington, Vt.

Burns, Oreg.
Butier, Ala. 02 2Fロ
 KBHM 1220
KROP 1300 A WITE 1380
KSTB 1430 WWGB 1430 KBRO 1490
KWHI 1280 NF 1240 M-N WEBJ 1240
WICC 600 M WNAB 1450 A WSN] 1240 $\begin{array}{lr}\text { KBUH } & 800 \\ \text { KBRN } & 800 \\ \text { KBRI } & 1570\end{array}$ KBRI 1570 WBIS 1440 $\begin{array}{lll}\text { WCYB } & 690 & \text { A } \\ \text { WFHG } & 980 & \text { M }\end{array}$ WFEG 980 M CFJR 1450 KGNI 1280 KGHM 1470 KGHM 1470
WCHJ 1470 WiAB 1340 m $\begin{array}{ll}\text { KURY } 910 \\ \text { KBRK } & 430\end{array}$ WBOS 1600 WPOS 1600 WWJB 1450 KTFY 1300 KBOR 1600 A KEAN 1240 WGIG 1440 A $\begin{array}{cc}\text { WCME } & 900 \\ \text { KORA } & 240\end{array}$ WTAW 1150
WBEN 930 WBEN 930 WBNY 1490
WEBR 970 WGR 550
WKBW 1520 WWOL 120 A KDBS 1450 KBLA 1490 KBAR 1230 A-M KBUR 1490 A WBAG WCAX 620 WDOT 1400 WDOY 1230
WJON 1230 KRNS 1230
WPRN 1220
C.L. Kc. N.A. Location

Butler, Pa.
Butte, Mont.

A N N A A N
VBUT $N$
$\left\{\begin{array}{l}\text { Location } \\ \text { Chatham, Ont. } \\ \text { Chattanooga, Tenn. }\end{array}\right.$
C.L. Kc. N.A. Locatlon Colonial Heights, Va. WPA 1290 Colorado city, Tex. WVMA 1290 Colo. Spras ${ }^{2}$, Colo. KRDO 1240 $\begin{array}{cc}\text { KPIK } & 1380 \\ \text { KVOR } 1300 \\ \text { KSSS } & 740\end{array}$ KSSS 740
KYSN 1460 ( H Columbia, Ky. WAIN 1270 Columbia, Miss, WERU
Golumbia, Mo. KFRU 1400 A

$$
\text { Columbia, } \mathrm{Pa}_{\mathrm{a}}
$$

$$
\begin{aligned}
& \text { Chester, S.C: } \\
& \text { Cheyenne, Wyo } \\
& \text { Chicago, Ill. }
\end{aligned}
$$

$$
0 \mathrm{~A}
$$

r

M
Ch

## Chicoutimi, Que.

Childress, Tex.
A

M

Champaign, III.
Chanute, Kans.
Chapel Hill, N.C.
Charleroi, Pa .
Ch
Charleston, Mo.
Charleston, S.C.

Charleston, W.Va.

Charlottesville. Va. ${ }^{\text {W }}$
N
A
Charlotte, Mith.
${ }^{N}$ Cha

W

Chase city, Va.

Cedartown, Ga,
Center, Tex
Centerville, Iowa
Centerville, Tenn.


Centralia, II. Centralia \& Chehal
Wash.
Centreville, Miss.
Chadron, Nebr. Chadron, Nebr.


## 260

 Caruthersville, Mo.Casa Grande, Ariz.
 KVO
W K
K WCAY $\mathbf{Y}$ A.M KCRG 590 C
KPIG WGMT 600 WGAA 1340 KGOG 1400
WH WHLP 1570
KBBC 1600 WNES 1600 WCNT 1210
KELA 1470 WGLC 1580 WCHA 800 WDWS 1490 WCHB 1460 WESA 940 $\begin{array}{ll}\text { WESA } & 940 \\ \text { KCHA } 1580\end{array}$ WEIC 1270 KCHR 1850 WCSC 1390 WCSC 1390 C
WREA 1340 A-M WPAL 730
WQSN 1450 WTASN 1450 WCAW 1400 WCAW 1400
WCHS 580
WHMS 1490 WHMS 1490 A
WKAZ 950 N
WTIP 1240 M
3

$$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
$$

WBT 1110 C

Chariottetown. P.E.I.CFCY 630 M


Claxton, Ga.
Clayton, Mo.
Clayton, N.Mex. Clearfleld, Pa. Clearwater, Fia. Cleburne, Tex.
Cleveland. Clev
Clev
cclevelandClew
Clif
clif$\stackrel{C}{C}$

WAYS 610
WKTCT ${ }_{930}$
WSOC 1240 M
weh
WELK

Cheboygan, Mich.
Cheektowaga, N.Y. Chenalis, Wash
Cheraw, S.C

Cherokee, 10
Chester, Pa.

$$
1
$$



$$
\left.\right|^{c}
$$ Chipley, Fla.

Chipoewa Fa, Christiansburg, Va, WBCR 1260 Christiansted, V.I. Churchill. Man. Cicero, III.
Cimeinnati, ohio
$\mathbf{M}$

Clanton, Ala. Claremore, Okla. Clarksturg, W.V.

Clarksdale, Miss.
Clarksville, Ark.
Clarksville, Tex.

WDKM 1400 M
WDXN 540
WCAR 1350
WCLA 1470

| KXLW | 1320 |
| ---: | ---: |
| KFUO | 850 | KLMX 1450 WCPA 900

WTAN 1340 KCLE II20 WRWH 1380
WCLD 1490 WDSK 1410
KYW 1100 WDOK 1260 M WERE 1300 WGAR 1220 C WABQ 1540 WJW 850 N
WBAC 1340 M 0 N

$$
\begin{aligned}
& ! \\
& ! \\
& \vdots \\
& \vdots \\
& !
\end{aligned}
$$

Crookston, Minn.Crossett, Ark.| Crossvilie, Tenn. WAEW | 800 |
| :--- | :--- |
| 1330 |  |Crowley, La. KSIG 1450 m

Cuero, Tex. KCFH 1600

Cullman Ala

## Cumberiand, Ky. <br> Cumberland, Md.

| KCFH | 1600 |
| :---: | :---: |
| WFMH | 1460 |

WMH 1460
WCVA 1490 M
WGPM 1280
WGPM 1280
WCUM 1230 C
WCUM 12300
KUSH 1600

KCCT 1150
KEYS 1440

| KRYS 1360 N |
| :---: |
| KSIX |
| 230 A-C |

KUNO 1400
WOTR 1370
KAND 1340
KVFC 740
WKRT 920
$\begin{array}{lr}\text { KOAC } & 550 \\ \text { KFLY } & \mathbf{2 4 0}\end{array}$
KLOD 1340
Coshocton, Ohio WT
$\begin{array}{lr}\text { KOMB } & 1400 \\ \text { NFRM } & 600\end{array}$
KSWI I560 M-A
CFCP 1440
WGFS 1430
WZIP 1050 M
WARB: 730
WKBL 1250
WIKEY 1340 A
NZYX $!440$ 0 A
CKEK 570

$$
\begin{aligned}
& \text { Crescent City, } \\
& \text { Creston, lowa }
\end{aligned}
$$

KPLY 1240

$$
\begin{aligned}
& \text { Creston, Iowa } \\
& \text { Crestview, Fla. }
\end{aligned}
$$

KSIB 1520
NCNU 1010
Crewe, Va,

WISB 1050

$$
\begin{aligned}
& \text { Crewe, Va, } \\
& \text { Crockett, Tex. }
\end{aligned}
$$

WSVS 800
KIVY 1290

Cushing, OkJa, KUSH 1600

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Location \& c． \& Location C．L．Kc．N．A． \& Location \& C．L．Kc．N．A． \& Location \& \\
\hline Gardens， \& Fla，WGTO \({ }^{540}\) \& Dover，N．H．．WTSN 1270， \& Escanaba，Mieh． \& T \& Ft．Seott，Idaho \& KMDO 1600 \\
\hline Cynth \({ }^{\text {Clty }}\) ，Fla． \& WDCF \({ }^{1450}\) \&  \& \& WLST 600 \& Ft．Smith，Ark． \& \\
\hline Har \& \(\begin{array}{ll}\text { KXIT } \& 140 \\ \text { KPLK } \& 460\end{array}\) \& Drumheller，Alta．CJDV 910 Drummondville，Que \& Esthervillo，lowa \& L 12 \& \& KTCS 1410 m \\
\hline as， \& KRLD 1080 c \& \& \& WULA 1240 \& Ft．Stockton， T \& \\
\hline \& K1XL \({ }^{1040}\) \& Dublin，Ga．WMLT \({ }_{\text {W }}\) \& ene，Oreg \& KORE 145 \& ， \& \\
\hline \& kLif 1190 \& Du Bois，Pa．WCED 1420 C \& \& K \& \& \\
\hline \& FAA \({ }^{570} \mathbf{A}\) \& Dubuque，iowa KDTH 1370 A \& \& \& \& \\
\hline \& 1480 \& Duluth，Minn， \& Eur \& \& Ft．Wayne，Ind． \& 0 \\
\hline The Dalles，Or \& KACI \(1300{ }^{\text {m }}\) \& WEBC \({ }^{\text {WREX }}\) 1080 \& \& \& \& WANE 1450 C \\
\hline on， \(\mathbf{G a}\) \& KODL 1440 A \& KDDD \& \& \& Ft．William， 0 \& 80 \\
\hline \& WRCD 1430 \& Dundalk，Md．WAYE 860 \& \& \& \& \\
\hline D \& WLAD 800 \& 1360 \& E \& KLUK 1240 \& Ft．Worth，Tox． \& 70 \\
\hline Danyi \& WDAN 1490 C \& Dundee，N．Y．WFLR 1570 \& \& \& \& \\
\hline Danvilie，Ky． \& WHIP 1230 \& Dunn，N．C．WC．WCKE 780 \& \& W \& \& \({ }^{970}\) \\
\hline Danville，Va． \& \({ }^{330} \mathbf{A}\) \&  \& \& \& \& \({ }^{570} \mathbf{~}{ }^{57}\) \\
\hline \& 硣 \& \& Everett，Wash． \&  \& \& 136 \\
\hline \& 580 \& \& \& \& Foun \& WFIS 1600 \\
\hline Dauphin \& \begin{tabular}{l}
WDAR 1350 \\
CKDM 1050
\end{tabular} \& \[
\begin{array}{r}
620 \\
1410
\end{array}
\] \& \& WBLO 1470 \& \& WK \\
\hline Dayenport，lowa \& \& \& \& \& \& w \\
\hline \& \& \& \& \& \& \\
\hline \& WSTT 1170 M \& Dyersburg，Tenn． \& \& 1310 \& Frankl \& 050 \\
\hline \& 230 \& Eagle Pass，Tex．KEPS 1270 \& wa \& KMCD 1570 \& Franklin， \& 500 \\
\hline \& 350 \& Easley，S．C：WELP 1360 \& Fairm \& Ksum 1370 \& \& \({ }^{950}\) \\
\hline Dayton，ohio \& \& E．Grand Forks，Minn． \& \& W \& \& 930 \\
\hline \& WONE 980 \& \& Fairmont，W．Va． \& \[
\begin{aligned}
\& \text { WMMN } 92 \\
\& \text { WTCS }
\end{aligned}
\] \& \& 析 \\
\hline \& 0 \& E．Lansing．Mich．WKAR 870 \& \& \& \& \\
\hline \begin{tabular}{l}
yton，Tenn． \\
ytona Beach．
\end{tabular} \& FIa．WDT 1280 \& E．Liverpoot，ohio WOHI 1490 A East Longmeadow，Mass． \& Falfurrias，Tex． Fallon，Nev \& KULV 1250 \& Frederieksbu \& \({ }^{\text {m }}\) \\
\hline \& \& \begin{tabular}{l}
East Longmeadow，Mass． \\
YM 1600
\end{tabular} \& \&  \& \& \\
\hline \& \& W \& \& WSAR 1480 A \& \& \\
\hline Deadwood，S．D \& \& E．St．Louis，III．WAMV 1490 A \& \& \& Freeport． N ． \& WGBB 1240 \\
\hline Dearborn，Mleh． \& 1 \& EST \({ }^{12300} \mathrm{~N}\) \& Fargo \& WDAY 970 N \& Fre \& \\
\hline eatur，Ala． \& WHOS \({ }^{800}\) \& \& \& \& \({ }_{\text {Fre }}\) \& KHUB 1340 \\
\hline \& 1400 M \& \& Farihault，Minn． \& KXHL 920 \& \& \\
\hline Decatur，Ga． Deeatur，III． \& WGUN 1010 \& \& \& \& resno， \& \\
\hline \& c \& \& Farmington，N．M． \& \& \& \\
\hline Dseorah，lowa \& 40 \& Edinburg，Tex．KURV 710 \& \& KWYK 960 \& \& 40 \\
\hline \& WONW 1280 \& \& \& \& \& KMAK 1340 \\
\hline \& \& Cumon，Ata．CBXA 740 \& \& BTC 1250 \& \& \\
\hline \& WD \& CFRN 1260 \& Farmille，Va． \& FL0 870 \& Front Roy \& \\
\hline De \& WLBK 1360 \& CHFA 680 \& Fayette，Ala． \&  \& \& \\
\hline Do Land，Fila \& W18S 1490 \& CJCA 930 \& rk． \& W－ \& \& \\
\hline \&  \& Edmundston．N．C．CJEM 570 \& Fayetteville，n．c． \&  \& Fulten， \& \\
\hline \& WDBF 1420 \& Effngham，ill．WCRA 1090 \& \& WFNC 1390 M \& Fuquay Sprgs．， \& \\
\hline \& KDTA 1400 \& Ethe \& \& Fld 14900 \& Gadsden，Ala． \& \\
\hline \& KOTS 1230 \& EICajon，Calif．KDED 910 A \& Fayetteville，To \& \& \& \\
\hline Denha \& 边 \&  \& \& \& \& 0 \\
\hline － \& 1580 \& Knto，Cain．KAMP \(1439{ }^{\text {m }}\) \& \& \& \& WOVH 980 \\
\hline ton \& KD \& Ei Dorad \& andina \& \& \& WR \\
\hline aver，colo． \& \& \& \& \& nesville，Ga， \& WGga 550 M \\
\hline \& KFML 1390 \& Eldin，ili．WRMN 1410 \& \& \& \& \\
\hline \& KHOW
KIMN

950
930 \& Elizabeth City，N．C．wenc 1240 \& \& WFIN 1330 \& Gaineswille，Te \& KGAF 1580 <br>
\hline \& ${ }^{K} \mathrm{KLIR} 9990$ \& \& itchburg，mass \& WEIM 1280 M \& Galax \& M <br>
\hline \& 710 \& WIEL 140 \& \& M \& \& <br>
\hline \& 850 \& Elizabethtown，N．c． \& gstaff，Ariz \& \& \& 10 <br>
\hline \& KPOF ${ }^{\text {KFSC }}$ \& \& \& \& Gallup，N．Mex． \& <br>
\hline \& KTLN 1280 \& 边 1240 \& Flat Rive \& \& \& <br>
\hline \& N 1390 \& Elkhart，Ind．WTRG 1340 N \& \& \& Galveston，Tex \& KILE 1400 <br>
\hline Moi \& KCBC 1390 A \& \& \& wanx \& \& 15450 <br>
\hline \& 940 \&  \& \& WAMM 1420 \& Garden＇City．Kans． \& 1050 <br>
\hline \& 1450 \& \& \& \& \& <br>
\hline \& KWKY 1150 \& \& \& \& Gary，Ind． \& <br>
\hline Detroit， \& w \& Elmira，N．Y．WELM ${ }^{\text {W }}$ \& Ala． \& \& \& <br>
\hline \& － \& \& \& \& Gastonla，N． \& GNC 14350 <br>
\hline \& \& \& s．c \&  \& \& 50 <br>
\hline \& \& El Paso，Tex． \& \& \& \& 00 <br>
\hline \& \& 69 \&  \& \& \& <br>
\hline \& 1340 \& KINT 1590 \& ordyce，Ark． \& K BJT 1570 \& \& 800 <br>
\hline \& \& KIEZ 1150 \& \& WMAG \& Georgetown， \& WGTN 1400 <br>

\hline \& $$
\begin{aligned}
& 1240 \\
& 1590
\end{aligned}
$$ \& SET 1340 \& \& \& \& <br>

\hline kin \& KSPL ${ }^{1260}$ \& Ely，Minn．WELY ${ }^{\text {E }}$（450 \& For \& \& \& <br>
\hline 元 \& WDKN 1260 \& KEEYY ${ }_{\text {WEOL }}{ }^{230}$ \& Forrest City，Ark． \&  \& Gladew \& ¢ 430 <br>
\hline Dillon，Mont， \& KDBM 800 \& Eminence，Ky．WSTL 1600 \& Ft．Coltins，colo． \& KCOL 1410 \& Glasgow \& ${ }^{1490}$ <br>
\hline Dinon，s．c．ip \& WDSC 800 A \& Emporia，Kans．KVOE 1400 \& Ft．Dodge，lowa \& KV \& \& 240 <br>
\hline \& KRDU 1240 \& Emporia，Va， \& \& KW \& Glendal \& KIEV 870 <br>
\hline Dothan， \& NO 378 \& \& Ft． \& \& \& KXGN 1400 <br>
\hline \& OF \& \％olo．KGMC 1150 \& Ft．Lauderdale，FI \& W \& \& WSC 1450 <br>
\hline Douglas，Ariz． \& \& KC \& \& \& \& <br>
\hline \& KAPR 930 ${ }^{\text {² }}$ \& Enterprise，Ala．W／RE 600 \& F．Madison，lowa \& K \& \& Zow 1240 <br>
\hline \& － 1050 \& \& \& \& Gloversvilie－Johnst \& ，N．Y． <br>
\hline Dover，Dell \& WDOV 1410 \& Erie，PE．WERG 1260 A \& \& \& \& <br>

\hline \& WKEN 1600 \& $$
10 \mathrm{~N}
$$ \& Ft．Payno， \& \& \& KLFT 1600 <br>

\hline 72 \& \& WEMB \& Ft．Pleree，Fla． \& $$
\underset{\mathbf{w}}{\mathbf{w}}
$$ \& \& \[

$$
\begin{array}{r}
1440 \\
730
\end{array}
$$
\] <br>

\hline
\end{tabular}

C.L. Ke. N.A.
WGBR 1150 A

Gonzales, Tex. Goodiand, Kans. Goshen, ind. Gratton $\mathbf{w}$ Grafton, W.Va Granam, ${ }^{\text {tex }}$ Granby, Que. Nfld Grand Falls, Nfid.
Grand Couiee, Wash. Grand Haven, Mieh Grand Island, Nebr. GHN 1370 K KMMJ 750
KRGI 1430
Grand Junction. Colo KREX 920 M KEXO 1230 Grande Prairie. Alta. CFGP 1050 Grande Prairie, Alta.CEGP 730 Grand Prairit, ${ }^{\text {Gran }}$, Mith.
 WFUR 1570 WGAV 1340 A WMAX 1480 M inn.
Grand Rapids, Minn
Grangeville, Idaho KORT 1490 M Grants, N.Mex. KMIN 980 Grants Pass, Oreg. Gravelbourg, Sask. Grayson, Ky. Gt. Barrington, Mass, Gt. Bend, Kans. Gt. Falls, Mont.

Greeley, Colo.
Green Bay. Wis. Green Cove Springs WUZ I'400 Greeneville. Tern Greenfield, Mass. WGRV 340 Greensboro, N.C. WBIG 1470 C WCOG 1320 WGBG 1400 A
Greensburg, Pa. Greenville, Ala.
Greenville, Miss.

WJPR 1330
WGDT 900
Greenville, N.C. WGVM 1260
Greenville, s.C. WFBC 1330 WMRB 1400 N WMUU 1260 WaOK 1440
Greenville, Tex. Greenwaod, IS.C. Greer, S.C.
Grenada, Miss. Gresham, Oreg Gretna, Va.
Griftin, Ga.

Grinnell, Jowa Groton, Conn. Grove City, Pa, Grundy, Va. Guelph, Ont. Gulfport, Miss.

Guntersville, Ala. Guthrie, Okia. Hajerstown, Md. Haleyville, Ala. Hamilton, Ala. Hamilton, Ohio
Hampiton, Ont.
Hamilton, Tex.
Hamlet, N.C. Hammond, La. Hamptoh, S.C. Hampton, Va.
Hancock, Mich. Hanford, Callf. Hannibal, Mo . Hanover, N.H.
M $\stackrel{H}{H}$

| M | H |
| :---: | :---: |
| H |  |

    A
    $\begin{array}{cc}\text { NJBE } & 1230 \\ \text { CBH } 1330\end{array}$
CHis
CHS 960

WABG 960
WGRS 1240 N
WGSW 1350
WEAB 800
WGKI 1300 A
WNAG 1400
KGRO 1230
WKEU 1450 m
WHIE 1320 :
WGPN
WSUB
WSUB 980
WSAS ${ }^{340}$
WNRG
WXRF 1590
WROA 1390
WGCM 1240 A

WGSV 1270
KGRW
WARK 290 .
Hagerstown, Md. WARK 1490. C
WERH 970
WMOH 1450
CHML 900
CKOC 1150
KKLW 900
WRX 1400
WJOB 1230
WPR
WBHC ${ }^{270}$
WMPC 490
WMPL 920
KNGS 620

| KHMO |
| :---: |
| WWSL |
| WDCE |
| 1040 |

    6
    | Location <br> Harlan, Ky. <br> Harlingen, Tex. <br> Harriman, Tenn. <br> Harrisburg, lll. <br> Harrisburg, Pa. <br> Harrison, Ark. <br> Harrisonburg, Va. <br> Harrodsburg, Ky. <br> Hartford, Conn. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  | Hartford, Wis;

Hartsole, Ala.
Hatsville, S.C.
Hartwell, Ga.
Harvard, II.
Harvey, II.
Hastings, Micf.
Hastings, Nohr:
Hattiesburg, Miss,
 Havre, de Grace, Md. Hawkinsville, Ga. Haynesvilfe, La
Hays, Kans. Hays, Kans,
Hayward, Wis Hazard, KY.Nc

MM

        \(\begin{array}{cc}\text { KVAT } 1450 \\ \text { KJRD } & 1000 \\ \text { WRD } & 1470\end{array}\)
    
        Henderson, Tex. K
    Hendersonville, N.C$c^{\text {He }}$
1Henryotta, Okla.Hereford, Tex.

Herkimer, N.Y.Herkimer, N.Y. WALY 1420Hermiston, Oreg. KOHU 1570 m| C | H |
| :--- | :--- |
| H |  |Hibbing, Minn. WMFG 1240 N


C.L. Ke. N.A WHLN 1410 KGBT 1530 WHBT 1600 WEBQ 1240 WHGB 1400 $\begin{array}{ll}\text { WHGB } & 1400 \\ \text { WGMB } & 1460 \mathrm{M}\end{array}$ WHP 580 C WKBO 1230 $\begin{array}{lr}\text { WASA } & 1330 \\ \text { WCEH } & 610 \\ \text { KLUV } & 1580 \\ \text { KAYS } & 1400\end{array}$ azard, Ky. WHSM 910
WKIC 1390 M tazenurst, miss. WMDC 1220
tazleton, Pa. WAZL Hazleton, Pa. WAZL 1490 N-M
Helena. Ark. Helena, Mont. KCAP 1340 M
Hemet, Calif. KHSJ 1320 Hempstead, N.Y. WHL! 1100 Henderson, Nev. KBMI 1400 Henderson, N.C. WHNO 890 A


C.L. Kc. N.A. KYOK 1590 N Humacao ${ }^{2}$ Humboldt, Tenn. WHUC 1350 WHUC 1230 KKHN 1340 CKCH 970 WALO 1240 WHUN 740 WHUN 1150 Huntington, Ind. WHLT 740 Huntington, W.Va.

WPLH 1470 M
WKEE 800 M Huntsville. Ala.
WSAZ 930 N
WBHP 930 M
$M$

|  | KYOK 1590 |
| :---: | :---: |
| Howell, Mich. | WHMI 1350 |
| Iudson, N.Y. | WHUC 1230 |
| Gupo, Okja, | KIHN 1340 |
| ull,. Que. | CKCH 970 |
| Humacao. P. R. | WALO 1240 |
| Humboldt, Tenn. | WIR] 740 |
| Huntinedon, Pa, | WHUN 1150 |
| Huntington, Ind. | WHLT 1300 |
| Huntington, N.Y. | WGSM 740 |

Kailua, Hawall
KANI 1240 Kaimuki, Hawait KAIM 870
Kalamazoo, Mich. WKZO 590 C WKWI 1960
Kalispell, Mont. $\quad$ KGEZ 600 \& Kamloops, B.C. CFJG 910 Kane, Pa. WADF $11 . \quad$ WKAN 1320
Kankakee, Kannapolis, N.C. WGTL 870 Kans. City, Kans. KCKN 1340

Kansas City, Mo. KCMO 810. | Kansas City, Mo. KCMO 810 |
| :--- |
|  |
| $K M B C$ | KPRS 1590

KUDL 1388. WAAY 1550 A Huntsville, Tex. Huren, S.Dak. Hutehinson, Kans. KWBW 1450 N Hutchinson, Minn. KDUZ $\mathbf{2 6 0}$ Idabel, Okla, Idaho KID 590 C
KIFII260 A. M
KUPI 980
Independence, Kans ind
Ing
ink
In nkster nternati KIND 1010
KANS 1510
WDAD 1450

## 

lonia, Mich.
lowa City, lowa
ron Mich ron Mtn., Mich.
ron River, Mich. ir Isilp, N. J

$$
1
$$

$\qquad$
$\begin{array}{lll}\text { Hillsboro, Ohio WSRW } & \text { W90 } \\ \text { Hillsboro, Oreg. KUIK } & 1360 \\ \text { Hillsboro, Tex. } & \text { KHBR } 1560\end{array}$
$\begin{array}{ll}\text { Hillsboro, Tex. } & \text { KHBR } 1560 \\ \text { Hillsdale, Mich. } & \text { WCSR } 1340 \\ \text { Hilo, Hawaii } & \text { KHBC } 970\end{array}$
Hobart, Okla. KTJS 1420
Holdredge Nriz. KDJI 1270
$\begin{array}{lll}\text { Holdredge, Nebr: KUVR } 1380 \\ \text { Holland, Mich. } & \text { WHTC } 1450 \\ \text { WIBL } 1260\end{array}$
Wollyw, WJBL 1260
Holly, Fla. WGMA 1320
$\begin{array}{llll} & \left.\begin{array}{ll}\text { Hollywood, Fla, WGMA } & 1320 \\ \text { Holyeke, Mass. } & \text { WREB } \\ \text { H } & \\ \text { Homer, La. } & \text { KVHL } \\ \text { Hom } & 1320\end{array}\right)\end{array}$
$\begin{array}{llll}\text { Holyoke, Mass. KVHL } & 1320 \\ \text { Homer, La, } & \text { Kia. } & \text { WSDB } \\ \text { Homestead, Fia }\end{array}$
$\begin{array}{lll}\text { Holyoke, Mass. } & \text { KVHL } 1320 \\ \text { Homer, La. } & \text { WSDB } 1430 \\ \text { Homestead, Fla. } & \text { WAM }\end{array}$
Homestead, Pa. WAMO 860
$\begin{array}{lll}H 0 m e s t e a d, ~ A a . ~ W J L D ~ & 1400 \\ H o m e w o o d, ~ A l a . ~ W M L ~\end{array}$
Homewood, Alalu KGMB 590 C
Honolulu. Hawali KPOI 1380
$\begin{array}{ccc}\text { KPOI } & 1380 \\ \text { KIKI } & 830 & \\ \text { KGU } & 760 & \mathrm{~N}\end{array}$
$\begin{array}{ccc}\text { KPOI } & 1380 \\ \text { KIKI } & 830 & \\ \text { KGU } & 760 & \mathrm{~N}\end{array}$
KHVH 1040

| KOHO 1170 |
| :--- | :--- |
| KOOD |

        \(\begin{array}{lll}\text { KPOA } & 630 & \mathrm{M} \\ \text { KULA } & 890 & \text { A }\end{array}\)
            Hood River, Oreg. KIHR 1340
            Hope, Ark, KXAR 490
                Hopkinsville, Ky. WHOP 1230
        \(\begin{array}{lc} & \text { WKOA } 1480 \\ \text { Hornell, N.Y. } & \text { WWHG } 1320 \\ \text { Hot Springs, Ark. } & \text { KAEA } 1480 \\ & \text { KBHS } 1350 \\ & \\ & \text { KBLO } \\ & 1470\end{array}\)
        \(\begin{array}{lll}\text { Hornelt, N.Y. } & \text { WWHG } & \text { WLEA } 1320 \\ \text { Hot Springs, Ark. } \\ & \text { KAAB } & 1350 \\ & \text { KBHS } & 590 \\ & \text { KBLO } & 1470 \mathrm{M}\end{array}\)
        \(\begin{array}{lll} & \text { Wornell, N.Y. } & \text { WHG } 1320 \\ \text { WLEA } 1480 \\ \text { Hot Springs, Ark. } \\ & \text { KAAB } 1350 \\ & \text { KBHS } & 590 \\ & \text { KBLO } & 1470\end{array}\)
            Hot Springs, \(\quad\) S. Dak. KOBH 580
        S. Dak. KOBH
    Houghton, Mich. WHOF
1400
Houghton Lake, Mich
Houlton, Maine WHOU 1340
Houma, La.
Housten, Miss
Housten, Miss
Houston, Tex.
WHOU 1340
WCIL 1490
KCOH 1430

| KGOH |  |
| :--- | :--- | :--- |
| KILT |  |
| K10 |  |
| KNUZ |  |
| 1230 |  |

        c
        M
        WGE 1260 A-
        WGEE 1590
    WIBC 1070
WIRE 1430 N

WISH 1810 C
WXIW

C
WXLW 950
WDLT 1380

WDLT 1380
$\begin{array}{ll}\text { WREO } & 1380 \\ \text { KREO } & 400 \\ \text { KTY }\end{array}$
WCHB 1440
C
A
C
Minn.
KGHS 1230
Wash. KEPR 610
Kenora, Ont. CJRL 1220
Kenosha, Wis
Independence, Mo. KANS 1510
Indiana, palis, ind.
Kenosha, Wis. WLIP 1050
Kentvilie, N.S. CKEN 1350
$\left\{\begin{array}{l}\text { Indianola, Miss. } \\ \text { Indio, Calif. } \\ \text { Inplewood, Callif. } \\ \text { Inkster, Mich. } \\ \text { International Falls, }\end{array}\right.$
High Point, N.C. WMFR 1230
Iron Min., Mich.
iron River, Mich.
$\begin{array}{lrr}\text { KION } & 1430 \\ \text { KXIC } & 800\end{array}$
Kermit, Tex. KOKX 1310
Kerrwile
KERB 600
$\begin{array}{ll}\text { Kelowna, B.C. CKOK } 630 \\ \text { Kelso, } & \text { CKOSh } 630\end{array}$
:
$\begin{array}{cc}\text { WBEUP } 1600 \\ \text { WFUN } 1450 \\ & \text { WAAY } 1550\end{array}$
Independence, Kans.
Kearne Ner
$\begin{array}{rrr}\text { WSUI } & 910 \\ \text { WMIQ } & 1450 & A \\ \text { WIKB } & 1230 & \text { A }\end{array}$
$\begin{array}{llll} \\ \text { ronton, Ohio } & \text { WIRO } & 1230 & M \\ \text { ronwood, Mieh. WIMS } & \text { W30 } & \text { M }\end{array}$
Ketchikan, Alaska KTKN 930 C-A
Kewanee. III. WKEI 1450
Keyser, W.Va. WKY 1270
Keyser, w.Va. WKYR 1270
Key West, Fla. WKWF 1600 m
$\begin{array}{ll} & \text { WKIZ } 5500 \\ \text { Kilgore, Tex. } & \text { KOCA } 1240\end{array}$
$\begin{array}{lc}\text { Kendallville. Ind. WAWK } 1570 \\ \text { Kenedy, Tex. } & \text { KAML } 980 \\ \text { Kenmore, N, Y. } & \text { WYSL } 1080\end{array}$
Kenmore, N, Y. WYSL 1080
Kennett, Mo. KBOA 830
$\begin{array}{ll}\text { Kilgore, Tex. KOCA } 1240 \\ \text { Kilreen, Tex. } & \text { KLEN } 1050 \text { W }\end{array}$
$\begin{array}{ll}\text { Kimben, Tex } & \text { Kebr. KIMB } 1260 \\ \text { Kimba }\end{array}$
$\begin{array}{ll}\text { Kimbali, Nebr. } & \text { KIMB } 260 \\ \text { King City, Cali\%. KRKC } 570 \\ \text { Kingman, Ariz. } & \text { KAAA } 1230\end{array}$
Kingman, Ariz. KAA.
Kings Mountain, N.C.
$\begin{cases}\text { Kings Mountain, N.C. } & \text { WKMT } 1220 \\ \text { Kingsport, Tenn. } & \text { WKIN } 1320\end{cases}$
$\begin{array}{ll} & \text { WKPT } 1400 \\ \text { Kingston, N.Y. } & \text { WKNY } 1490 \\ \text { Kingston. Ont. } & \text { CFRC } 1490 \\ & \text { CKLC } 1380\end{array}$
$\begin{array}{lc}\text { Kingston, N.Y. WKNY } 1490 \\ \text { Kingston. Ont. } & \text { CFRC } 1490 \\ & \text { CKLC } 1380\end{array}$
${ }^{0}{ }^{\mathrm{M}} \mathrm{M}$

thaca, N.Y. WHCU 870 C

| C | K |
| :--- | :--- | :--- |
| A |  |
| A |  |
| K |  |

Jackson, Miss.

| $A$ |
| :---: | :---: |
| $A$ |
| $M$ |
| $\mathbf{N}$ |
| $\mathbf{C}$ |
| $\mathbf{M}$ |


| V1PF 1340 | Jackson, Ala. |
| :---: | :---: |
| NFG 1240 N | Jackson, Mieh. |
| HKY 1290 A | Jackson, Miss, |
| WIRC 630 |  |
| WMFR 1230 A |  |
| N NOS 1590 |  |
| WHPE 1070 |  |
| SRW 1590 |  |
| KUIK 1360 | Jackson; Ohio |
| CHBR 1560 | Jackson, Tent. |
| WCSR 1340 |  |
| KHBC 970 C |  |
| KIPA 1110 | Jacksonville, Flat |
| $\text { KIMO } 850 \mathrm{~m}$ |  |$\begin{array}{ll}\mathrm{O} & \mathrm{M} \\ \mathbf{N}\end{array}$

$\begin{array}{rlr} \\ \text { WFIC } & 960 \\ \text { WISP } & 1230 \\ \text { Kirkind, Wash. KNBX } & 1050\end{array}$
Kirkiand, wash. KNBX 1050
Kirkiand Ont. CJKL 560
Kirksville, Mo, KIRX 1450
Kisimmes, Fla, WKBX 1220
M
M
M
$\begin{array}{ll}\text { Hilo, Hawai } & \text { KHBC } \\ & \text { KIPA } 1110 \\ & \text { KIMO } 850 \mathrm{M}\end{array}$
WHBG 1360
WSVA 550 N Huntington, N.Y.
Huntington,
Kalamázoo, Mich.
WKMI 1360
Kalispell, mont. KGEZ 600 \%
Kamloops, B.C. CFJC 910
Kankakee, III. WKAN 1320
$\begin{array}{ll}\text { Kansas City, Mo. KCMO } \\ & \text { KMBC } 980 \\ & \text { KPRS } 1590 \\ & \text { KUDL } 1380\end{array}$
Hotbrook Ariz KHOS 1280
Hofbrook, Ariz. KDJI 1270
Holdredge, Nebr. KUVR 1380
Homestead, Fla. WSDB 1430
Homestead, Pa. WAMO 860
Hanover, N.H. WDCR 1840
Hanover, Pa.
KNUZ
KPRG
${ }^{2} 230$
950
0
A
A
.


Location
Mt. clemens. Mich Mt. Jackson, Va. WMDF 1580 Mt. Kisco N Y Y WSIG 790 Mt. Pl WVIP 1310 M. Pleasant, Mich. WCEN 1150 Mt. Pleasant, Tex. KIMP 960 Mt. Shasta, Calif. KWSD 620 Mt. Sterling, Ky. WMST 1150 Mt. Vernon, 111. WMIX 940 Mt. Vernon, ind. WPCO 1590 Mt. Vernon, Ky. WRVK 1460
Mt. Vernon, Ohio WMVO 1300 Mt. Vernon, Ohio Muleshoe, Tex.
Mullins, S.C.
Huncie, ind.
Munfordville, Ky.
Munising, Mieh.
Murphy, N.C.
Murphysbore, 1il. Murray, Ky. Murray, Utah Muscle Shoals City,
Alabama
Muskegon, Mith.
WTRU 1600
WMUS 1090
muskogee, Okla.
Myrtle Beach, S.C.
Nacogdohes, Tex.
Nampa, Idaho Nanaimo, B.C. Nanticoke, Pa. Napa, Calif. Naples, Fla. Nashua, N. H.

Nashville, Ark. Nashville, Tenn.

WMVO
KBRC 1430
KMUL 1380
KZOL 1570
WJAY 1280
WLBC 1340
WLOC 1150
WMAB 1490
WGRS 1450
WMTS 860
WCVP 600
WKRK 1390
WINI 1420
WNES 1340
KMUR 1230
KWPG 860
WLAY 1450
WKBZ 850
WTRU 1600
WMUS 1090
KMUS 1380 KEEE 1230 KEEE 1230 FXD 860 CHUB 570

## Natchez, Miss.

 $A$$A$
$A$ Niles Falls, Ont. CHVC 1600 Nogales, Ariz. KNOG 1340 A Norfolk, Nebr. Nerfolk, V Natchitaches, La. Nebraska City, Nebr.

KNCY 160 KSFE 1340 Neenah, Wis. WNAM 1280 Nelsinit, Wis. WCGN 1370 Nelson, B.C. CKLN 1390 Neon, Ky . KBTN 1420 KNEM 1240 Nevada, Mo. New Albany, Ind. WOWI 1570 New Albany, Miss. WNAU 1470 Newark, N.J. WNTA 970 WHBI 1280 WNTR 1430 Newark, N.Y. WACK 1420 New Bedford, Mass.WBSM 1420 New Bern, N.C. WHIT 1450 M Newherry, S.C. WRNB 1490 New Boston, Ohio WiOI 1010 New Braunfels, Tex. KGNB 1420
New Britain, Conn. WHAY 910 New Brunswick, N.J. WCTC 1450 Newburgh, N.Y. WGNY 1220 Newhuryport, Mass. WNBP 1470 New Carlisie, Que. CHNC 610 Neweastle, N.B. , CKMR 790 New Castle, Pa. WKST 1280 New Glasgow, N.s. CKEC 1320 New Haven, Conn. WAVZ 1300 WNHC 1940
New lberia, La. KANE 1240 New Kensington, Pa.WKPA 1150 New London, Conn.

Newnan, Ga.
New Orieans, La.

Newport, Ark.
Newport, Ky.
Nowport, Oreg
Newport' R.1.
Newpert, Vt.

Va.
WETZ 1330 M WCOH 1400 M WDSU 1280 WIBW WBOK 800 WNOE 1060
 WNPS $1450{ }^{\text {A }}$ WWL ${ }_{940}^{870} \mathrm{C}$ WWOM 940 M WYED 1280
KNOP 740 WNOP 740 WADK 1540 WLIK 1270



Locatio

Hreveport, La. KANB 1300
KANB 1300
KCEJ 1050
KEEL 710 KENT 1550
KJOE 1480 KOKA 980 KRMD 1340 KWKH 1130 Sidney, Mont. KWGH 1130 C Sidney, Nebr. KSID 1340 A Sitra Vista, Ariz. KHFH 1420 Siler City N. KSLM 1400

$$
\begin{aligned}
& \mathbf{S} \\
& \mathbf{S} \\
& \mathbf{S} \\
& \mathbf{S} \\
& \mathbf{A} \\
& \mathbf{A} \\
& \hline
\end{aligned}
$$

Suffolk, Va:

$$
\begin{aligned}
& \text { Subphur Sprgs., Tex. } \\
& \text { Sulphur'Side, P.E.I. } \\
& \text { Summersid }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Summerside, P.E.I. } \\
& \text { Summerville, Ga. }
\end{aligned}
$$ Silsbee, Tex Sumter, S.C.

Sunbury, Pa. Superior, Nebr. Superior, Wis.

$$
\mathrm{M}
$$

$$
\mathbf{c}
$$

Simeoe, Ont.
Sioux City, lowa

- A


## KMNS 620 KTRI 1470 Sioux Falls, S.Dak. KISD 1230 Kid

Susanville, Calif. Swainsboro, Ga. Sweetwater; Tex. Sydney, N.S.
Sylacauga, Ala.
Sylva, N.C.
Syracuse, ${ }^{\text {N. }}$.

Sitka, Alaska KIFW 1230C-A Skowhegan, Maine KSEW 1400


Socorro, N. Mex. Soda Sprgs., Idaho Somerset, Ky.
Somerset, Pa .
Sonora, Calif.
Sorel, $P$ Q.
So. Bend,

## Southbridge, Mass.

 So. Boston, Ya. WSo. Gastonia, I

$$
\mathrm{A}_{1}
$$ Florida $\mathrm{So}_{4}$ Paris, $\mathrm{Me}^{\mathbf{~}}$ $\qquad$ c. $w$

 $\mathrm{So}_{0}$. Williamsport, Pa

Sparta, Tenn
Spartanburg, S.C.

Spencer, Jowa

## Springdale, Ark. <br> Springfield, Ill. <br> Springfield, Mass.

Springfield. Mo.

Springfield, Ohio
Springfield, Oreg. Springfteld, Tenn Springfleld, Vt Springhill, La. Spruce Pine, N.C. Stamford, Conn Stamford, Tex
Starkvilie, Miss. State College, Pa.
Statosbor0, Ga.
Statesville, N.C.
Staunton, Va.
Stephenville, Tex.
Sterling, Colo.
Sterling, IH.
Steubenvilte, Ohio
Stevens Point, Wi
Stevens Point, Wis.
Stillwater, Okla.
Stoekton, Calif.

Storm Lake, lowa 8tratford, Ont. Streator, 111.
Stroưdsburg, Pa
Sturgeon Bay, Wis. Sturgis, Mich.
Stuttrart, Ark
Sudbury Ont

WMPT 1450 .
WHCQ 1230

WSMT 1050 WCOW 1290 | WORE | 900 | N |
| :---: | :---: | :---: |
| WORA |  |  |
| W50 |  |  | WSPA 950

KICD 1240 KICD 1240
KGA 1510 A KGA 1510
KLYK 1230 KPEG 1380 KHQ 590 N KNEW 790 KXLY 920 KCFA 1330 KBRS 1340 A CVS 1450 A. M $\begin{array}{ll}\text { WMAY } 970 & \mathrm{~N} \\ \text { WTAX } 1240 \mathrm{C}\end{array}$ WBZA 1030 WHYN 560 C WMAS 1450 KGBX 1260 N KICK 1340 KWTS 1400 O WIZE 560 'A WBLY 1840 A KEED 1050 WDBL 1590 WCFR 1480 KBSF 1460
WTOE 1470 WSTG 1400 KDWT 1400 WRGR 1490

WSSO 1230 WMAJ 1450 M WWNS 1240 | WSBIC |
| :--- |
| WD | 550 WTON 1240 KSTY 900 KGEK 1230 KOLR 1490 WSDR 1240

WSTV 1340 WSPT 1010 WLBL 930 WAVN 1220 KJOY 1280 KRAK 1140 KSTN 1420
KWG 1230 A-M KAYE 990 WIZZ 1250 WVPO 840 WSTU 1450 M WSTR 1230
KWAK 1240 H
CKSO 790


$$
\begin{gathered}
\mathbf{A} \\
\mathbf{N} \\
\mathbf{M} \\
\mathbf{C} \\
\mathbf{A} \\
\mathbf{N} \\
\mathbf{N} \\
\mathbf{C} \\
\mathbf{C} \\
\mathbf{M} \\
\mathbf{N} \\
\mathbf{C} \\
\mathbf{A} \\
\mathbf{A} \\
\mathbf{A} \\
\mathbf{M}
\end{gathered}
$$

$$
\mathbf{M}
$$

$$
A
$$

Tot

$$
7^{\top}
$$

$T$
$T$
To

CHNO 900
WLPM 1450 A KIKS 1310 mmmervile G. GJRW 1240

Tabor City, N.C


$$
\underline{I}
$$

Ta

Tallassee, Ala. Tailulah, La.

Tarboro, N.C.
Tarboro, N.C. Tasley, Va Taunton, Mass Tawas City, Mich. Taylor, Tex Taylorville, ill. toll City, ind. oil City, Ind. Terre Haute, Ind.

Terrell, Tex.
Texarkana, Ark.
Texarkana, Tex.
Texas City, Tex Thayer, Mo.
The Dalles, Oreg. Thermopolis, Wyo. Thief River Falls. Thetford Mines, Que Thibodaux, La, Thomasville, Ala. Thomasvitie, Ga. Thomasville, N.C. Three Rivers, Que WTWA 1240 M CKTR 1150 Ticonderoga, N.Y. Tifton, Ga

Tillamook, Oreg. Tillsonburg, Ont. immins, On
Titusville, Fla.

Tooele, Utah

Toppenish, Wash. Toronto, Ont.

## Torrington, Conn

Torrington, Wyo. Towson, Md Traverse City, Mich. WTCM 1400 Trenten; Mo. $\mathbf{A}$
$\mathbf{A}$
$\mathbf{N}$
M
10 N
T
C)
$z$

M
KOSY 790 M
KTFS 1400
KTLW 920
KALM 1290 KRMW 1300 KRTR 1490 M


KTRF 1230

## 

(Location C.L. Kc. N. $\boldsymbol{N}$

Locátion
Trinidad, Colo.
Troy, Ala.
Troy, N. WTTM 920 N KCRT 1240 解 WTBF 970 M Wallace, Idaho

Truckee, Calif.

WHAZ 1330 WHRY 980
WHOE 1400 CKCL 600 Truth or Consequences New Mexico KCHS 1400
Tryon, N.C. Tryon, N.C.
Tueson, Ariz.

Wallace N.C. Wash. $\qquad$
 N $\begin{array}{ll}\text { Wargen, Ohio } & \text { WHHH } 1440 \\ \text { Warren, Pa. } & \text { WNAE } 1310\end{array}$ Warrensburg, Mo. KOKO 1450
Warrenton, Mo. KWRE 730 Warrenton, Va. WEER 1570

| Warsaw, Ind. $\quad$ WKCW 1420 |  |
| :--- | ---: |
| WRSW 1480 |  |
| Warsaw, Va. | WNNT 690 | Tulare, Calif. $\quad$ KCOK 1270 M Tulia, Tex. Tulahoma, Tenn.

```
Tupelo, Miss.:
```

Tuscaloosa, Ala.
Tuscumbia, Ala.
Tuskegee, Ala.
Twin Falls, Idaho
Two Rivers, Wis.
Tyler, Tex.

## Val D'Or, que.

 Valley City, N.Dak.Van Buren. Ark. Van wert, Ohio
Vanceburg, Ky.

## Vancorver, Wash.

 V Verdun, Que.Vermilition, S.Dak. Vermal, Utah Vernon, B.C. Vernon, Tex.

Vicksburg, Miss.
Victoria, B.C.
Victoria, Tex.
Victoriaville, Que.
Vidalia, Ga.
Vieques, $P . R$.
Ville Marie, Que.
Ville Platte, La.
Ville St. Georges,
Vincennes, Ind.
Vineland, N.J.
Vinita, okla.
Virginia, Minn. $V$.
Virougua, Wis.
Visalia, Calif.
Vivian, La.

## V

Wadena, Minn.
Wadesboro, N.C.
Wailuku, Hawaii
Waipabu, Hawail
Walhalla, S.C. M. $\begin{array}{ll}\text { Warsaw, Va. } \\ \text { Warwick-E.Greenwich, R.I. } \\ \text { Wasco Calif. } & \text { WYNG } 1590 \\ \text { WWO } & 1050\end{array}$ $\begin{aligned} & \text { Washington, D.C. } \text { WGMS } 570 \\ & \text { WMAL } 630 \\ & \text { WOL } 1450 \mathrm{M} \\ & \text { WOOK } 1340 \\ & \text { WDC } 1260\end{aligned}$ Washington, GR. WRC 980
WTOP
WKE
WK
WK $\rightarrow$ Washington. Ind. WAMW IS80
A Washington, N.J. WGRV 1580
Washington, N.C. WOOW 1340 A
Washington, Pa.
Washington Court
$\begin{array}{ll}\text { N Wouse, Ohio } & \text { WGHO } 1250 \\ \text { Waterbury, Conn. WATR } 1320\end{array}$
A
C
M
M
H

| A | Waterloo, lowa |
| :--- | :--- |
|  | KXEL 1540 |
|  | KNWS 1090 |
|  | KWWL 1330 |
| Watertown, N.Y. | WATN 1240 |
|  | WOTT 1400 | WWNY 790 ©

Watertown, S.Dak. KWAT 950 M
Watertow. Wis. WTTU c Waterville, Me WTVL $\begin{aligned} & \text { Watsonville, Calif. } \\ & \text { WOMY } \\ & \text { Wat }\end{aligned}$ Wauthula, Fla, WAUC 1310
Waukegan, III. WKRS 1220 $C$
A Wa
Wa $A$
$\mathbf{N}$
$A$ $>E$
$\sum_{0} \mathbb{E}$
 $\begin{array}{lll} & \text { WAYX } 1230 \\ \text { Waynesboro, Ga. WBRO } 1310 \\ \text { Waynesoro, Miss WABO } 990 \\ \text { Wayn }\end{array}$ Waynesboro, Pa. WAYZ 1380
Waynesboro, Va. WAYB 1490 M Waynes burg, Pa. WANB $\$ 580$ M Weatherford, Tex. KZEE 1220 Webster City, lowa KJFJ 1570
Weirton, W,Va. WEIR 1430
Weiser, Idaha $\begin{array}{lr}\text { Welch, W.V. WELC } 1150 \\ \text { Welland, Ontario } & \text { WOVE } 1340 \\ \text { CHOW } 1470\end{array}$ Wellsboro, Pa. WNBT 1490 n Wellston, Ohio WKOV 1390
Wellsvilie, N.Y. WLSV 790
$\begin{array}{ll}\text { GKVL } & 850 \\ \text { KUSD } & 690\end{array}$ Wenatchee, Wash.

| KJB 940 |  |  |
| :--- | :--- | :--- |
| KVWC 1490 |  | KMEL 1340 |
| WAXE 1370 | Keslaed, Tex. | KRGV 1290 |
| WTTB Bend, Wis. | WBKV 1470 |  |

Westbrook, Me. WJAB 1440
W Frankfort, III, WFRX 1300 W. Frankfort, III, W
West Jefterson, N.C.

WKSK 1600

W: Monroe, La. KUZN 1310 $\begin{aligned} & \text { W. Palm Beach, FIGT } \\ & \text { WEAT 850 } \\ & \text { WJNO } 1230 \\ & \text { WIRK } 1290 \\ & \\ & \text { WPM }\end{aligned}$ KVIC 1340 N CFDA 1380 | WIVY |
| :--- |
| 1370 | KVP 710 West Plains, Mo. KWPM 1450

West Point, Ga. WBMK 1810 West Point, Miss WROB 1450 M W. Springfield, Mass.

CKRB 1460
WAOV 1450 M
WWBZ 1360
WDVL 1270
WHLB 1400 N
W. Yarmouth, Mass.

WTXL 1490 A WBOF 400

Westerly, R.I. WERI 1230 M
(Lacation $\quad$ C.L. Kc.N.N.

mb A A M

| Location Wheeling, W.Va. | . Ke. N.A. | Lecation | L. Ke. N.A. | Locetion C.L. Ke. N.A. | Locdtion | . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WHLL 1600 | Williston, N.D. | 21360 | KAGE 1380 | Ar | KWYN 1400 |
|  | WKWK 1400 A | Willmar, Minn. | KWLM 1340 A | Winona, Miss. WONA 1570 | Wytheville, Va, | WYVE 1280 |
| White Castle, La, | WWVA 1170 C | Willow Springs, | KUKU 1330 | Winsiow, Ariz. KVNCioio a | Yakima, Wash. | KIT 1280 |
|  | KEVL 1590 | Wilmington, Del. | WAMS 1380 M | Winston-Salem, N.C. | Yakma, wash. | KIMA 1460 C |
| White Plains, N.Y. | WFAS 1230 |  | WDELII50 N | WAAA 980 |  | KUTI 980 |
| White River Junc., | Vt. |  | WILM 1450 A | WAIR 1340 |  | KYAK 1390 M |
|  | WWRJ 910 |  | WTUX 1290 | WSJS 600 N | Yankton, S.D. | KYNT 1450 |
| Whitehorse, Y.T. Whitesburg, Ky. Whiteville, N.C. Wiehita, Kans. | WTCW 920 | , | MFD 630 A | C |  | WNAX 570 C |
|  | WENC 1220 |  | WGNI J340 m |  |  |  |
|  | KAKE 1240 M | Wilson, N.C. | WGTH 590 C | WINT 1360 | Yellowknife, N, W | T. CFYK 1340 |
|  | KLEO 1480 |  | WVOT 1420 M | Winter Park, Fla. WABR 1440 M | York, Nebr. | KAWL 1370 |
|  | KFBI $1070{ }^{\text {K }}$ | Winchester, Ky. | WWKY 1380 | Wisconsin Rapids, Wis. | York, Pa. | WNOW 1250 |
|  | KFH 1330 C | Winehester, Tenn. | WCDT 1340 | WFHR 1340 M |  | WORK 1350 N |
|  | KSIR 900 | Winchester, Va, | WINC 1400 A | WoIf Pt., Mont. KVCK 1450 M |  | $\text { WSBA } 910 \mathrm{~A}-\mathrm{M}$ |
| Wichita Falls, Tex. | KWBE 1410 | Winder, Ga. | WIMO 1300 | Woodside, N.Y. WWRL 1600 | York, S.C. | $\text { WYCL } 1580$ |
|  | KSYD 990 m | Windom, Mini. | KDOM 1580 | Woodstock, N.B. CJCJ 920 | Yorkton, Sask. | CJGX 940 |
|  | KTRN 1290 | Windsor, N.S. | CFAB 1450 | Woodstoek, Ont. CKOX 1340 | Youngstown, Ohio | WBBW 1240 A |
|  | KWFT 620 C | Windsor, Ont. | CBE I550 | Woodward, Okla. KSIW 1450 |  | WFMJ 1990 N |
| Wildwood, N.J. <br> Wilkes-Barre, Pa. | WGMC 1230 |  | CKLW 800 M | Woonsocket, R.i. WNRI 1380 |  | WKBN 570 C |
|  | WBAX 1240 M WBRE 1340 N | Wingham, Ont. Winnemucca, Nev. | CKNX 920 KWNA 1400 | Wooster Ohio WWON 1240 | Yreka, Calif. | $\text { KSYC } 1490$ |
|  | WBRE 1340 N | Winnemucca, Nev. | KWNA 1400 | Wooster, Ohio WWST 960 | Yuba City, Calif. | KUBA 1600 |
|  | WILK 980 A | Winnfield, La. | $\text { KVCL } 1270$ |  |  | KAGR 1450 |
| Williamshurg, K.Williamson, $\mathrm{W} . \mathrm{Va}$ | WEZ」 1440 | Winner, S. Dak. | $\text { KWYR } 1260$ | WAAB 1440 M-N.A | Yuma, Ariz. | KOFA 1240 |
|  | WBTH 1400 M | Winnipeg, Man. | CBW 990 | WNEB 1230 |  | KBLU 1320 |
| Williamsport, Pa. | WLYC 1050 |  | CKRC 630 | WORC 1310 |  | KVOY 1400 A |
|  | WRAK 1400 N |  | Y 580 | Wor WTAG 580 C |  | KYUM 560 N |
|  | WWPA <br> WIAM <br> 1340 <br> 900 |  | CJOB 680 KMAR 1570 | Worland, Wyo K KWOR 1340 M | Zanesville, Qhio | WHIZ 1240 N |
| Wilfiamston, N.C. | WIAM 900 | Winnsboro, La. Winona, | KMAR KWNO K 230 | Worthington, Minn, KWOA 730 Worthington, ${ }^{\text {Ohio }}$ WRFD 880 | Zarephath, N.J. | WAWZ 1380 |

## United States FM Stations

Abbreviations: Mc., megacycles, asterisk (*) indicates educational station_

| Location | C.L. | Mc. |
| :---: | :---: | :---: |
| ALABAMA |  |  |
| Albertvilte | WAVU-FM | 105.1 |
| Alexander City | WRFS-FM | 106.1 |
| Andalusia | WCTA-FM | 98.1 |
| Athens | WHMA-FM | 104.3 |
| Birmingham | WAPI-FM | 99.5 |
|  | BRC-FM | 106.9 |
|  | WSFM | 93.7 |
| Clanton | WKLF.FM | 100.9 |
| Cullman | WFMH-FM | 101.1 |
| Decatur | WHOS-FM | 102.1 |
| Homeweod | WILN | 104.7 |
| Huntsville | WAHR | 99.1 |
| Mobile | WKRG.FM | 99.9 |
| Tusealoosa | WTBC-FM | 95.7 |
|  | WUA | 9.7 |
| ARIZONA |  |  |
| Clobe | KWJB.FM | 100.3 |
| Mesa | KBUZ-FM | 104.7 |
| Phoenix | KELE | +95.5 |
|  | KFMM | 88.5 |
| Tueson | KFMM | 99.5 |




|  | KBEI 107.5 |
| :---: | :---: |
|  | KBCA KBMS 105.1 105.9 |


| KBCBH |
| ---: |
| 8.7 |




Location
Museatine Storm Lake
Waverly
C.L. KWPC-FM 99.7 KAYL-FM 101.5 $\begin{array}{lll}\text { KWAR } & 89.1\end{array}$
Locotion
E. Lansing
Flint
Grand Rapids

Highland Pk.
Jackson
Kalamazoo
Oak Park
Royal Oak
Saginaw
Sturgis
C.L. Mc. Location WKAR-FM *90.5 New York




| Ashland | WCMI.FM | 93.7 |
| :---: | :---: | :---: |
| Gentral City | WNES-FM | 101.9 |
| Fulton | WFUL-FM | 104.9 |
| Hazard | WKIC-FM | 96.5 |
| Henderson | WSON-FM | 99.5 |
| Hopkinsville | WRLX | 98.7 |
| Lexington | WBKY | *91.3 |
|  | WLAP-FM | 94.5 |
| Louisvifle | WFPK | *91.9 |
|  | WFPL | *89.3 |
|  | WLVL | 97.5 |
| Madisonville | WFMW-FM | 93.9 |
|  | WNGO-FM | 94.7 |
| Owensboro | WOMI-FM | 92.5 |
|  | WVJS.FM | 96.1 |
| Paducah | WPAD-FM | 96.9 |
|  | WKYB-FA | 93.3 |

LOUISIANA
Alexandria
Baton Rouge Monroe Monroe New Orleans


## KENTUCKY


 $\begin{array}{cc}\text { KBCL-FM } & 96.5 \\ \text { KWKH-FM } & 94.5\end{array}$

| MISSOURI |  |  |
| :---: | :---: | :---: |
| Clayton | KFUO-FM | 99.1 |
| Joplin | WMBH-FM | 96.1 |
| Kansas City | KCMO-FM | 94.9 |
|  | KCMK | 93.3 |
|  | KCUR-FM | 89.3 |
|  | KXTR | 96.5 |
| Kennett | KBOA-FM | 98.9 |
| Poplar Bluff | KWOC-FM | 94.5 |
| St. Louis | KCFM | 93.7 |
|  | KSLH | *91.5 |
| Springfield |  | 94.7 |
| West Plains | KWPM-FM | 93.9 |
| NEBRASKA |  |  |
| Lincoln | KFMQ | 95.3 |
| Omaha | KQAL-FM | 94.3 |

New York

Niagara Falls
Olean
Patchogue
Peekskill
Poughkepsie
Rochester
Sehenectady
South Bristol
Springville
Syracuse

Troy
Utica
Wethersfield
White Plains

## MAINE

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

## MARYLAND

Annapolis
Annapolis
Baltimere
WNAV-FM 99.1

| Baitimore | WGAO-FM | 102.7 |
| :--- | ---: | :--- |
|  | WBAL-FM | 97.9 |
|  | WITH-FM | 104.3 |
| Bethesda | WIMD | 106.3 |
| Bradbury Heights | WPGC | 95.5 |
| Cumberland | WCUM-FM | 102.9 |
| Hagerstown | WJEJ.FM | 104.7 |
| Oakland | WAR-FM | 106.9 |
| Westminster | WTTR-FM | $\mathbf{9 5 . 5}$ |
|  |  |  |


| MASSACHUSETTS |  |
| :---: | :---: |
| Amherst | WAMF *88.1 |
|  | WMUA *91.1 |
| Boston | WBUR *90.9 |
|  | WBCN 104.1 |
|  | WBZ-FM 106.7 |
|  | WCOP-FM 100.7 |
|  | WEELFM 103.3 |
|  | WERS *88.9 |
|  | WHDH-FM 94.5 |
|  | WRKO-FM 98.5 |
|  | WXHR 96.9 |
| Brockton | WBET-FM 97.7 |
| Brookline | WBOS-FM 92.9 |
| Cambridge | WGBH-FM *89.7 |
|  | WHRB-FM WKOX-FM 105. |
| Framingham |  |
| Lowell | WLLH-FM 99.5 |
| New Bedford | WBSM-FM 97.3 |
|  | WNBH-FM 98.! |
| S. Hadley Springfleld | WMHC 88.5 |
|  | WHYN-FM 93.1 |
|  | WEDK 91.7 |
|  | WMAS-FM 94.7 |
| Waltham | WCRB-FM 102.5 |
| W. Yarmouth | WOCB-FM 94.3 |
| Williamstown | WCFM *90.1 |
| Winchester | WHSR-FM *91.9 |
| Worcester | WTAG.FM 96.1 |

## MICHIGAN

Ann Arbor Benton Hrbr. Coldwater Dearbor
Detroit

WUOM *91.7
WHFB-FM 99.9 WTVB-FM 98.3 WDET-FM* 100.5

$\begin{array}{cc}\text { WHFI } & 94.7 \\ \text { WJBK-F } & 93.1\end{array}$
$\begin{array}{llr}\text { WMUZ } & 103.5 \\ \text { WMZK } & 97.9\end{array}$
WJR-F 96.3
WXYZ-FM 101.I INew Rochelle
Jamestow


Ren

$$
\mathrm{O}_{\mathrm{or}}^{\mathrm{Li}}
$$

## NEVADA

NORTH CAROLINA
Albemarle $\quad$ WABZ-FM 100.9 $\begin{array}{lll}\text { Asheboro } & \text { WGWR-FM } & 92.3 \\ \text { Ashevilis } & \text { WLOS-FM } & 104.3 \\ \text { Burlington } & \text { WBBB-FM } & 101.1\end{array}$

## NEW HAMPSHIRE



| Nashua | WOTW-FM 106.3 |
| :---: | :---: |


| NEW JERSEY |  |  |
| :---: | :---: | :---: |
| Asbury Park | WILK-FM | 94.3 |
| Bridgeton | WSNJ-FM | 98.9 |
| E, Orange | WFMU | *91.1 |
| Hackettstown | WNTI | *91.9 |
| Newark | WNTA.FM | 94.7 |
|  | WBGO | *88.3 |
| New Brunswk. | WCTC.FM | 98.3 |
| Paterson | PAT-FM | 93.1 |
| Princeton | WPRB | 103.9 |
| South Orange | WSOU | *89.5 |
| Trenton | WTOA | 97.5 |
| wildwood | WCMC-FM | 100.7 |
| Zarephath | WAWZ-FM | 99.1 |

NEW MEXICO
Albuquerque KANW *89.I
Aztec
Los Alamos Roswell

NEW YORK
Albany
Auburn
Babylon
Binghamton
Brooklyn
Buffalo

Cherry Valley
Corning
DeRuyter
Floral Park
Hornell

## Hominel Ithaca

 $\begin{array}{rr}\text { WABC-FM } & 95.5 \\ \text { WBAI } & 99.5 \\ \text { WBFM } & 101.9\end{array}$ $\begin{array}{rr}\text { WGBS-FM } & 101.1 \\ \text { WEVD-FM } & 97.9 \\ \text { WFUV } & \text { 90.7 }\end{array}$| WHOM-FM | 92.3 | Marion |
| :---: | :---: | :---: |
| WKGR-FM | © 89.9 | Middietow |

WNEW-FM 102.7
WNYC-FM $\begin{array}{cc}93.9 \\ \text { WNYE } & 91.5\end{array}$
$\begin{array}{cc}\text { WOR-FM } & 98.7 \\ \text { WQXR-FM } & 96.3\end{array}$

Dayton

## Delaware <br> East Li

Findlay
Fostoria

C.L.
Mc.

Location
C.L. Mc. Fremont
Hamilton

Kent
Lancaster
Lima
Marion
Mt. Vernon
Newark
Oxford
Portsmosth
Saitem
Springfield
Steubenville
Toledo

Woostér
WFRO-FM 99.3 WQMS 96.7 WHOH 103.5 WKSU-FM *88.I WHOK-FM 95.5 WIMA-FM 102.1 WMRN-FM 106.9 WPFB-FM 105.9 WMVO-F 93.7 WCLT-FM 100.3 WMUB *88.5 WPAY-FM 104.-1 WSOM-FM 105.1 WLEC-FM 102.7 WBLY-FM 108.9 WSTV-FM 103.5 WSPD-FM 101.5 WMHE $\begin{gathered}92.5 \\ \text { WTDS } \\ * 91.3\end{gathered}$ WTOL-FM 104.7 WWST-FM 99.9 $\begin{array}{lr}\text { WWST-FM } & 104.5 \\ \text { WKBN-FM } & \mathbf{9 8 . 9}\end{array}$ $\begin{array}{ccr}\text { WBBW-FM } & 93.3 \\ \text { WRED } & 101.1\end{array}$

OKLAHOMA

| OKLAHOMA |  |
| :---: | :---: |
| Durant Norman | KSEO-FM 107.3 <br> WNAD-FM $* 90.9$ |
| Oklahoma City | K0KH *88.9 |
|  | KEFM 94.7 |
| Shawnee | $\mathrm{KKBACO}_{* 89.9}$ |
| Stillwater |  |
| Tulsa | KWGS *90.5 |
| OREGON |  |
| Eugene | KRVM *91.9 KEED-FM 93.1 |
|  |  |
|  | $\mathrm{KGGPO}_{96.9}$ |
| ${ }_{\text {Mrants }}^{\text {Medford }}$ |  |
| Oretech Portland | KEX-FM ${ }^{\text {KTEC }}$ *88.1 |
| Portiand | KOIN-FM 101.1 |
|  | KPFM 97.1 |
|  | KPOJ-FM 98.7 |
|  | K KFM 100.3 KRRC *89.3 |

## PENNSYLVANIA

Allentown
Altoona
Bethlehem
Bloomsburg
Braddoek
Butler
Carlisle
Chambersburg
Dubois
Easton
Erie
Glenside
Harrisburg
Havertown
Hazleton
Johnstown
Lancaster
Lebanon
Meadville
Oil City
Palmyra
Philadelphia

WFMZ 100.7
$\begin{array}{cc}\text { WVAM-FM } & 100.1 \\ \text { WGPA FM } & 95.1\end{array}$ $\begin{array}{ll}\text { WGPA FM } & 95.1 \\ \text { WHLM-FM } & 106.5\end{array}$ WHLM-FM 106.5 $\begin{array}{lll}\text { WLOA-FM } & 96.9 \\ \text { WBUT-FM } & \mathbf{9 7 7}\end{array}$ $\begin{array}{lrr}\text { WBUT-FM } & 97.7 \\ \text { WHYL-FM } & 102.3\end{array}$ $\begin{array}{lr}\text { WHYL-FM } & 102.3 \\ \text { WCHA-FM } & 95.1\end{array}$ $\begin{array}{lll}\text { WCED-FM } & 102.1 \\ \text { WEST-FM } & 107.9\end{array}$ $\begin{array}{cc}\text { WEST-FM } & 107.9 \\ \text { WEEX-FM } & 99.3\end{array}$ $\begin{array}{rrr}\text { WERC.FM } & 99.9 \\ \text { WIFI } & 92.5\end{array}$ $\begin{array}{rrr}\text { WIFI } & 92,5 \\ \text { WHP-FM } & 97.3\end{array}$ WHHS *89.3 $\begin{array}{ll}\text { WAZL-FM } & 97.9 \\ \text { WARD-FM } & \mathbf{9 2 . 1}\end{array}$ $\begin{array}{lr}\text { WARD-FM } & \mathbf{9 2 . 1} \\ \text { WJAC-FM } & \mathbf{9 5 . 5}\end{array}$ $\begin{array}{lr}\text { WGAL-FM } & 101.3 \\ \text { WLAN-FM } & 96.9\end{array}$ $\begin{array}{lr}\text { WLAN-FM } & \mathbf{9 6 . 9} \\ \text { WLBR-FM } & 100.1\end{array}$ WLER-FM 100.1
WMGW-FM $\$ 00.3$

WDJR 98.5 $\begin{array}{rr}\text { WJWR } & 92.1 \\ \text { WCAU.FM } & 98.1 \\ \text { WDAS.FM } & 105.3\end{array}$ WDAS-FM 105.3
$\begin{array}{lr}\text { WFLN } & 95.7\end{array}$ WHAT-FM 96.5 WIBG-FM 94.1 $\begin{array}{rr}\text { WIP-FM } & 93.3 \\ \text { WPEN-FM } 102.9\end{array}$ WRTI-FM *91.7 WXPN *88.9
$\qquad$
WFMP 99.7
$\begin{array}{cr}\text { WKJF } & 93.7 \\ \text { WWSW-FM } & 94.5\end{array}$ WPPA-FM 101.9

WGBI-FM 101.3 $\begin{aligned} \text { WUSV } & 88.9 \\ \text { WPIC-FM } & 102.9\end{aligned}$ | WPIC-FM |
| :---: |
| WDFM |
| *91. |
| 102.9 | WKOK-FM 94.1 $\begin{array}{rr}\text { WTTC-FM } & 92.7 \\ \text { WRRN } & \end{array}$ $\begin{array}{rrr}\text { WRRN } & 92.3 \\ \text { WJPA.FM } & 104.3\end{array}$ WAYZ-FM 101.5 WBREFFM 98.5 WLYC.FM 105.1 WRAK-FM 100.3

RHODE ISLAND
Ldecition Cranston Provifence

TEXAS C.L. Mc. Location WLoV 99.9 Amarillo WPFM 95.5 PRO-FM 92.3 Beaumont WWON-FM 106.3 $\begin{aligned} & \text { Cleburne }\end{aligned}$ Corpus
Dallas
SOUTH CAROLINA
C.L.
K

Charleston Columbia

Dillon
Greenvilie
Rock HIII
Seneca
Spartanhurg


TENNESSEE

| Bristol |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 Chattanooga | WDOD-FM | 96.9 | Midland |
| Greaneville | WGRV.FM | 94.9 | Plainview |
| Jacksont | WTJS-FM | 104.1 | Port Arthur |
| Johnsod City | WJHL-FM | 100.7 | San Antonio |
| Kingsport | WKPT-FM | 98.5 |  |
| Knoxville | WBIR-FM | 93.3 $* 91.1$ | Texarkana Waco |
|  | WUOT | *91.9 | Waxahachie |
| Nemphis | WMPCF | 99.7 | UT |
|  | WMPS-FM | 97.1 | Eqhraim |
| Nashville | WF的B | 105.9 | Logan |
| Abilene | Wsix-FM KACC-FM | $\begin{array}{r} 97.5 \\ * 91.1 \end{array}$ | Salt Lake City |

VIRGINIA

| Location | C.L. | Mc. | Lecation | c.L. | Mc. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Arlington | WARL-FM | 105.1 | Beckley | WBKW | 99.5 |
| Charlottesville | WINA-FM | 95.3 | Charleston | WKAZ-FM | 97.5 |
|  | WTJU | 91.3 | Huntington | WKEE-FM | 100.5 |
| Crewe | WSVS=FM | 104.7 | Martinsburg | WEPM-F ${ }_{\text {W }}$ | 94.3 |
| Harrisonburg | WEMC | *91.7 | Morgantown | WAJR-F ${ }_{\text {W }}$ | 99.3 |
|  | WSVA-FM | 100.7 | Oak Hill: | WOAY-FM |  |
| Lynchburg | WWOD-FM | 100.1 | Parkersbura | WAAM-F ${ }_{\text {W }}$ | 106.5 |
| Martinsville | WMVA-FM | 96.3 | Wheeling | WKWK-F ${ }^{\text {W }}$ | 97.3 |
| Newport News | WGH-FM | 97.3 |  | WWVA-FA | 98.7 |
| Norfolk | $\begin{aligned} & \text { WMTI } \\ & \text { WRVC } \end{aligned}$ | $\begin{gathered} * 91.5 \\ 102.5 \end{gathered}$ |  | NSIN |  |
|  | WYFI-FM | 99.7 |  |  |  |
| Richmond | WCOD | 98.1 | Appleton | WLFM | *91.1 |
|  | WRFK | 91.1 | Chilton | WHKW | *89.3 |
|  | WRVA-FM | 94.5 | Colfax | WHWC | * 88.3 |
|  | WRNL-FM | 102.1 | Delafield | WHAD | * 90.7 |
| Roanoke | WDBJ-FM | 94.9 | Eau Claire | WIAL | 94.1 |
|  | WROV-FM | 103.7 | Fort Atkinson | WFAW | 107.3 |
| South Norfolk | WSWFOS | *90.5 | Greenfield Twp. | WWCF | 94.9 |
| Staunton | WAFC-FM | 93.3 | Highland | WHHI | 91.3 |
| Williamsburg | WCWM | 89.1 | Highland Twp. | WHSA | *89.9 |
| Winehester | WRFL | 92.5 | Janesville | WCLO-FM | 99.9 |
| W oodbridge | WBVA | 105.9 | La Crosse | WHLA | *90.3 |
| WAS | NeTON |  | Madison | WHA-FM | *88.7 |
| Bellingham | KGMI | 92.9 |  | WISZ-FM | 98.1 |
| Cheney | KEWC-FM | *89.9 |  | WRVMFM | 104.1 |
| Seatte | KING-FM | 98.1 | Merrill | WLIN | 102.5 100.7 |
|  | KETO-FM | 104.5 | Milwaukee | WFMR | 10.7 96.5 |
|  | KIRO-FM KISW | 100.7 99.9 | miwaukee | WQFR | 96.5 93.3 |
|  |  | 99.9 98.9 |  | WTMJ-F | 94.1 |
|  | KU0W | 94.9 | Monroe | WEKZ-FM | 93.7 |
| Spokane | KREM-FM | 92.9 | Racine | WRJN-FM | 100.7 |
|  | KXEY-FM | 99.9 | Rice Lake | WJMC-FM | 96.3 |
| Tacoma : | KCPS | $90.9$ | Sparta | WCOW-FM | 97.1 |
|  | KLAY-FM KTNT-FM | $\begin{array}{r} 106.3 \\ 97.3 \end{array}$ | Wausau | WHRH | *91.9 |
|  | KTOY | *91.7 | West Bend | WBKV-FM | 92.5 |
|  | KTWR | 103.9 | Wisc, Rapids | WFHR-FM | 103.3 |

# Canadian FM Stations 

| Lecarion | C.L. | Mc | Location | C. | M | Location | C. | Mc. | caflon | c.L. | Ne. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brantford, Ont. | CKPC-FM | 92.1 |  | CKLC.FM | 99.5 | Ottawa, Ont. | CBO.FM | 103.3 | Location | CFRB-FM | Mr. |
| Cornwalt, Ont. | CJSS.FM | 104.5 |  | CKWS-FM | 96.3 | Otawa, Ont. | CFRA-FM | 93.9 |  | CHFJ-FM | 98 |
| Edmonton, Alta. | CFRN-FM | 100.3 | Kitchener, Ont. | CKCR-FM | $967$ | Quebec, Que. | CHRC-FM | 98.1 |  | CJRT-FM | 91.1 |
|  | CJCA-FM <br> CKUA-FM | 99.5 98.1 | Lethbridge, Alta. London, Ont | CHEC-FM | 100.9 | Rimouski, Que. | CJBR-FM | 101.5 | Vancouver, B.C. | CBU-FM | 105.7 |
|  | KUA-FM | 98.1 | London, Ont. | CFPL-FM | 95.9 | St. Catharines, ont. |  |  | Verdun, Que. Vietoria B C | CKVL-FM | 96.9 98.5 |
| Ont: | CKPR-FM | 94.3 |  |  | 100.7 | Sydney, | CJCB-FM | 94.9 | Windsor, On | CKLW-FM | 93. |
| Halifax, N.S. | CHNS-FM | 96.1 |  | CFCF-FM | 106.5 | Timmins, ont. | CKGB-FM | 94.5 | Winnipeg, Man. | CJOB-FM | 93. |
| Kingston, Ont. | CFRC-FM | 91.9 | Oshawa, Ont. | CKLB-FM | 93.5 | Toronto, Ont. | CBC.FM | 99. |  |  |  |

## United States Television Stations

(Territories and possessions follow states). Chan., channel number; asterisk ( ${ }^{*}$ ) indicates educational station.


| Locotion | C.L. Chan. L | Location C.L. Chen. | Location C.L. Chan. | coitlon C.L. Chens. |
| :---: | :---: | :---: | :---: | :---: |
| INDIANA |  | Marquette <br> Onondaga <br> WILX.TV/WMSSB | $\begin{array}{cc\|c} \text { WOR-TV } & \text { g } \\ \text { WPil } & 11 & \end{array}$ | Wikes-Barrs WBRE-TV 28 <br> York WSBA-TV 43 |
| Bloomington | WSWTTV 4 S | Saginaw WKNX-TV 57 |  WNBC-TV 4 <br> Plattsburg WPTZ-TV 5 |  |
| Elikhart | WSIV-TV <br> WFIE-TV <br> 14 | Traverse City WPBN-TV 7 |  | RHODE ISLAND |
|  |  | MINNESOTA | WROC-TV 5 <br> WVET-TV 10 | Providence WJAR-TV 10 <br>  WPRO-TV 12 |
| Ft. Wayno | WANETV 15 | Alexandria KCMT $\mathbf{7}$ S <br> Austin KMMT 6 S | Sehenettady WHENRGB <br> Syracuse  <br> 8  |  |
|  | WPTA 21 | Duluth KDAL-TV | Utica WSYRTV ${ }^{\text {W }}$ | A |
| Indianapolis | WFBM-TV ${ }^{6}$ |  |  | WAIM-TV 40 |
|  | WISH-TV 8 | Minneapolis ${ }^{\text {WCCO-TV }} 4$ | NORTH CAROLINA | Charleston WCSC-TV 5 |
| Muncie | WFAM-TV ${ }^{18}$ | Rochester WTCN-TV 11 | Asheville WISE-TV 62 | Columbia WIS.TV 10 |
| South Bend | WNDUTV 16 | St. Paul KSTP-TV 5 | Chill WLOS-TV 13 | Florence WNETW 8 |
| Terre Haute | TV 10 | *2 | Chapel Hill  <br> Charlotte WUNC-TV <br> WBTV  | Greenville WFBC-TV 4 |
| Terre Haute |  | MISSISSIPPI | wSoc.tV 9 |  |
| IOWA |  | Columbus WGBI-TV 4 G | Greensboro , WFMY-TV 2 | SOUTH DAKOTA |
| 兂 | WOI-TV | Greenwood WABGTTV ${ }^{6}$ |  | Aberdeen KXAB-TV |
| Cedar Rapids | KGRG-TV | Jackson WJTV 12 | Washington WRALITN 7 | Deadw |
| port | WOC-TV 6 | Laurel WDAM-TV 7 | Wilmington $\quad$ WSECT ${ }^{\text {W }}$ W ${ }^{6}$ | Florence - KDLO-TV Mitehell |
| Des Moines | KRNT-TV 8 | Meridian WTOK-TV 11 | Winston-Salem WSIS-IV 12 | Rapid City KOTA-TV |
|  | KDPS-TV ${ }^{\text {WHO-TV }} 13$ | Tupelo WCOC-TV ${ }^{\text {W }}$ | NORTH DAKOTA | Reliance KRSD-TV <br> KPLO-TV  |
| t | KQTV 21 |  | Bismarck KBMB-TV 12 | Falls KELO-TV 11 |
|  | KTVO 3 | MISSOURI | 5 |  |
| ioux City | KTIV ${ }_{9}$ | Cape Girardeau KFVS-TV 12 | $\begin{array}{ll}\text { Diekinson } & \text { KDIX-TV } \\ \text { Farco }\end{array}$ | TENNESSEE |
|  | KwWVTV 9 | Columbia , KOMU-TV 8 | Fargo KXGO-TV ii | Chattanooga WDEF.TV 12 |
| Waterloo | KWWL-TV 7 | Hannibal $\begin{aligned} & \text { Kefferson City } \\ & \text { KRCG-TV } \\ & \text { K }\end{aligned}$ | Grand Forks KNOX-TV 10 | WRGP.TV 3 |
| KANSAS |  | Jefferson city Joplin | Minot KXMC-TV 13 | Jackson WDXTVC 9 |
|  |  | Kansas City | 4 | Jackson Wity Whiliv il |
| Ensign | KTVG ${ }^{6}$ | MBC-TV | Williston KUMV-TV 8 | Knoxvilie WATE-TV 6 |
| Garden | KBLR-TV 11 |  |  | WTVY 10 |
| Goodland | KBLR-TV ${ }_{\text {K }}$ |  | OHIO | Memphis WHBQ-TV ${ }^{\text {a }}$ |
| Hays | KAYS.TV 7 | St. Louis - KMOXETC *9 | Akron WAKR.TV 49 | 10 |
| Hutchinson Pittsburg | KTVH 12 | TV | Cincinnati WCPO-TV ${ }^{\text {W }} 9$ | V |
| Topeka | BW-TV 13 | $1{ }^{2}$ | RrC-TV 12 | Nashville |
| ichita | KAKE-TV 10 |  | WLW-T 5 | WSIX-TV |
|  |  | Springfield KTTS.TV 10 | Cleveland WKW-TV ${ }^{5}$ |  |
| KENTUCKY |  |  | WEWS 5 | EXAS |
| Lexington | WLEX-TV 18 | ONTANA | Columbus WBNSTV 10 | Abilene KRBC-TV |
|  | WKYT 27 | Billings KOOK-TV | WOSU-TV ${ }^{\text {W4 }}$ | $\begin{array}{ll}\text { Amarilo } & \text { KFDA-TV } \\ & \text { KGNC-TV } \\ & 4\end{array}$ |
| Louisville | $\begin{aligned} & \text { WAVE-TV }{ }^{3} \\ & \text { WFP-TV } \end{aligned}$ | GH | WTVN-TV | KVII 7 |
|  | WHAS-TV 11 | Butte KXLF-TV <br> Glendive KXGN-TV | Dayton WH1O-TV 7 | Austin ${ }^{\text {KTBC-TV }} 7$ |
|  | WAXL-TV 41 | Glendive ${ }^{\text {Great }}$ Falls | Lima WIMA-TV 35 | $\begin{array}{ll}\text { Beaumont } \\ \text { Big Spring } & \text { KFBM-TV } \\ \text { KEDY-TV } & 6 \\ 4\end{array}$ |
| WPSD-TV 6 |  |  |  | Bryan kBTX.TV |
| LOUISIANA |  | Helena Kalispell | $\begin{array}{ll}\text { Steubenville } & \text { WSTV-TV } \\ \text { Toledo } \\ \text { WSPD-TV } & \\ \text { I3 }\end{array}$ | Corpus Christi KRIS-TV ${ }^{6}$ |
| Alexandria | KALB-TV | Missoula KMSO-TV 13 | V *30 | Daltas KRLD.TV 4 |
| Baton Rouge | WAFB-TV 28 | NEBRASKA | Youngstown WFMJ-TV 21 | El Paso WFAA.TV ${ }_{\text {K }}$ |
| Lafaye | KLFY-TV 10 |  | Youngstown WKBN-TV 27 | El Paso : $\quad$KELP-TV <br> KROD-TV <br>  |
| Lake Charles | KPLC.TV 7 | Hastings Hay Springs KHAS-TV KDUH-TV | $\begin{array}{ll} & \text { WKST-TV } \\ \text { Zanesville } & \text { WHIZ-TV } \\ & 18\end{array}$ | KTSM-TV |
|  | KTAG-TV 25 | Hay Springs Haves Center | Zanesville WHIz-TV 18 | (Ciudad Juarez, Mex.) ${ }^{\text {PEJ.TV }} 5$ |
| Monros | KNOE-TV ${ }^{\text {KLSE }}$ \% ${ }^{\text {a }}$ | Kearney KHOL.TV 13 | OKLAHOMA | Ft. Worth KFJZ-TV If |
| New Orleans | WDSU-TV 6 | Lincoln KOLN-TV 10 |  | WBAP-TV 5 |
|  | WVUE 13 |  |  | Harlingen KGBT-TV  <br> Houston KPRC-TV |
|  | WL-TV | McCook KOMC 8 <br> North Platte KNOP 2 |  | Houston KPRC-TV 2 |
|  | ESV ${ }^{* 8}$ | North Platte <br> Omaha | Lawton KSWO-TV 7 | $\begin{gathered} \text { KHOU-TV } 11 \\ \text { KTRK-TV } 13 \end{gathered}$ |
| Shreveport | $\begin{array}{ll} \text { KSLA-TV } & 12 \\ \text { KTBS:TV } & 3 \end{array}$ |  | 0klahoma City K KETA *13 | KUHT *8 |
| MAINE |  | ttsbluff KSTF 10 | KH-TV ${ }^{\text {KWTV }}$ | Laredo KGNSTV 8 |
|  |  | TV 4 | Lubbock KCBD-TV 13 |
| nor | AB |  | VADA |  | Lufkin |
|  | WLBZ |  | KTUL-TV 8 | Monahans KVI |
| Poland Spring | WMTW-TV | Henderson KLRJ-TV 2 <br> Las Vegas KLAS-TV 8 | KVOO-TV 2 | Odessa M KOSA-TV |
| Portland | WCSH-TV ${ }^{6}$ | Las Vegas KSHO-TV 13 |  | Port Arthur-Beaumont |
| Presque | WAGM.TV 8 | Reno KOLO-TV 8 | OREGON | KPAC-T |
|  |  |  | Corvallis KOAC-TV *7 | Richardson San Angelo |
| MARYLAND |  | NEW HAMPSHIRE | Eugene KVAL.TV 13 | San Antonio KCOR-TV 41 |
| Baltimore | TV 13 | Durham WMENH *II | Medford KBES-TV 5 | KENS-TV 5 |
|  | TV 11 |  | Portland KGW-TV ${ }_{27}^{8}$ | WOAI.TV 4 |
| Salisbury | WBOC-TV 16 | NEW JERS | IN-TV 6 | $\begin{array}{ll}\text { Sweetwater } & \text { KPAR-TV } \\ \text { Temple }\end{array}$ |
| MASSACHUSETTS |  | Newark WNTA-TV 13 | Roseburg KPIC 4 | Texarkana KCMCTV ${ }^{6}$ |
|  |  | Tyler KwTXLY ${ }_{\text {Waco }}$ |  |
| Adams Boston | wCDC 19 |  | NEW MEXICO | PENNSYLVANIA | Weslaco KRGVTV 5 |
|  |  | Albuquerque KGGM-TV 13 | Altoona WFBG-TV 10 | Wichita Falls $\begin{array}{ll}\text { KFDX-TV } \\ & \text { KSYD.TV } \\ \end{array}$ |
|  |  | 5 KNME-TV *5 | Erie WGICU 12 | KSYD-TV 6 |
|  | TV ${ }^{7}$ | 7 KOB-TV | Harrisburg WHE-TV 5 | JTAH |
| Greenfield Springfied | WRLP <br> YNTV <br> 10 |  | WWTPA 27 |  |
|  | WWLP 22 |  | Johnstown WARD-TV ${ }^{56}$ | Provo Salt Lake Clty KLOR-TV |
| Worcester | WWOR-TV 14 | NEW YORK | Lancaster WGAL-TV g | KCPX-TV 4 |
| MICHIGAN |  |  | Lebanon WLVH.TV 15 | KUED *7 |
|  |  |  | Lockhaven WBPZ.TV 32 | $\checkmark 2$ |
| Bay City | WNEM-TV |  | Philadelphia WCAU-TV 10 | NT |
| Cadiliac | WWTV 13 |  | WFIL-TV 6 | NT |
| Cheboygan | WTOM-TV 4 |  |  | Burlington WCAX-TV |
| Detroit | WJBK-TV $* 2$ |  |  |  |
|  | W1-TV |  | Pittsburgh KDKA.TV 2 | VIRGINIA |
|  | WXYZ-TV |  | 7 WIIC 11 |  |
| (Windsor, Ont.) | CKLW-TV |  | 7 WQED*13 | Hampton WVEC.TV 13 |
| Flint | $\mathrm{T}^{12}$ |  | 7 W WQEX ${ }^{*} 16$ |  |
| Grand Rapids <br> Kalamazoo <br> Lansing | $\begin{aligned} & \text { WOOD-TV } \\ & \text { WKO-TV } \end{aligned}$ $W J M=T V$ |  | 5 Scranton WNEP-TV <br> 2  16 <br>  WDAU-TV 22  | WHITE'S RADIO LOG 181 |



## Canadian Television Stations



## World-Wide Short-Wave Stations

Most international broadcasting is done within frequency limits agreed upon at international conventions. These frequency ranges are listed here, at the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60, 49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the 19, 16, 13 and 11 M . bands is best during the day, also at night during, the summer in the 16 and 19 M . bands.

Abbr.: AIR-All India Radio; RAI-Radiotelevisione Italiana; RTF-Radiodiffusion Television Francaise; VOA-Voice of America; RFE-Radio Free Europe. - denotes stations beaming evening (U.S.) broadcasts to the U.S., $\dagger$ morning or afternoon broadcasts.

## METER BANDS

4750 to $5060 \mathrm{kc} / \mathrm{s}$ ( 60 meter band) 5950 to $6200 \mathrm{kc} / \mathrm{s}(49$ meter band $)$ 7100 to $7300 \mathrm{kc} / \mathrm{s}$ ( 41 meter band) 9500 to $.9775 \mathrm{kc} / \mathrm{s}(31$ meter band) 11700 to $11975 \mathrm{kc} / \mathrm{s}$ ( 25 mefer band) 15100 to $15450 \mathrm{kc} / \mathrm{s}$ ( 19 meter band) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ ( 16 meter band) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ ( 13 mefer band) 25600 to $26100 \mathrm{kc} / \mathrm{s}$ ( 11 meter band)

Kes. Call and Location . 4630 HCGBI, Quito, Ecua. 4765 HJEF, Cali, Col. 4770 ELWA, Monrovia, Lib. 4770 YVMW, Punto Fiji, Ven. 4775 Ligreville, Gabon Rep. 4790 YVON, Valencia, Ven. 4790. YVQN, Puerto La Cruz,

4795 Rangoon, Burma
4805 Z YS8, Manaus, Braz. 4810 YVMG, Maracaibo, V En . 4830 YVOA, San Cristobal,
4835 HJKE, Bogota, Col. 4840 Lourenco Marques, Moz. 4840 YVOI, Valera, Ven. 4845 HJGF, Bucaramanga, Col, 4850 YVMS, Barquisimeto
4870 Cotonou, Dahomey Rep. 4880 YVKF,Caracas, Ven. 4893 Dakar, Mali Fed. 4895 PRF6, Manaus, Braz. 4898 HJAG, Barranquiua, Col. 4900 YVKP, Caracas, Ven. 4905 HRQN, Puerto Cortes,

4910 HCIMI, Quito, Ecua. 4910 Conakry, Guinea
4915 Accra, Ghana
4920 VLM4, Brishane, Aus. 4920 YVKR, Caracas, Ven. 4930 HCIRC, Quite, Ecua, 4935 H JLF, Ibague, Col.
4940 Abidjan, Ivory Coast 4940 YVMO, Barquisimeto

Kes. Call and Location 4945 HJCW, Bogota, Coi. 4945 Paradys, So. Afr.
4950 Dakar, Mali Fed.
4950 YVMM, Coro, Ven. 4955 CR6RZ, Luanda, Ang. 4960 YVQA, Cumana, Ven. 4970 YVLK, caracas, Ven. 4975 Yaounde, Cameroun 4990 Lagos, Nigeria
4990 YVMQ; Barquisimeto, 5010 HCRCX, Quito, Eeua. 5010 St. George, Grenada, 5020 HJFW, Manizales, Col. 5020 Niamey, Niger Rep. 5030 YVKM, Caracas, Ven. 5040 YVMA, Maracaibo, Ven. 5045 Lome, Togo
5050 YVKD, Caracas, Ven. 5075 H JGC,' Bogota, Col. 5873 HRN,' Tegucigalpa, Hond. 5940 Moscow, U.S.S.R.
5952 TGNA, Guatemala, Guat. 5954 TIQ, Puerto Limon, C. R 5960 HJCF Bogota, Col.
5965 YNWW, Granada, Nic. 5980 TGAR, Guatemala, Guat. 5981 Georgetown, Br. Guiana 5982 4VB, Port-au-Prince,

5990 Andorra, Andorra
Haiti
5990 TGJA, Guatemala, Guat. 5995 Fort-de-France, Mart. 60024 VEC, Cap Haitien, Haiti 6005 RIAS, Berlin, Ger: 6006 TIHBG, San Jose, C. R. 6010 XEOL, Mexico City, 6015 PRA8, Recife, Braz

Kes. Call and Location 6020 Amman, Jordan 6020 Kiev, Ukrainian S.S.R. 6025 Kuala Lumpur, Malaya 6025 Hilversum, Neth. 6030 Baghdad, Iraq 6035 Bangoon, Burma 6035 HRTL, Tegucigalpa, Hond. 6037 TIFC, San Jose, C. R. 6037 Monte Carlo, Mon. 6040 HJLB, Ibague, Col. 6045 YDF, Djakarta, Indon. 6045 HOU31, David, Pan. 6050 HCJB, Quito, Ecua. 6050 BBC, London, Eng. 6055 HJEX, Cali, Col. 6055 JOZ2,' Tokyo, Japan 6060 RAI, Caltanissetta, it. 6065 XEXG, Leon, Mex. 6065 Horby, Sweden
6070 Sofia, Bulgaria
6070 BBC, London, Eng.
6075 Norden, Ger.
6080 ZL7. Wellington, N.Z.
6082 OAX 42 , Lima, Peru
6085 Munieh, Ger.
6090 VLif, Sydney, Aus. 6090 XECMT, C. EI Mante 6095 ZYB7, Sao Paulo Mex. 6100 VOA , Munich, Ger. 6100 Belgrade, Yugo. 6103 Peking, China 6105 XEQM', Merida, Mex. 6105 Tunis, Tunisia 6110 BBC , London, Eng. 6115 ZYC7, Rio de Jan., Braz. BI 20 LRXI, Buenos Aires

Kes. Call and Location 6120 BBC, Limassol, Cyprus 6130 Port Moresby, New Guinea 6130 Madrid, Spain 6135 HRMF, La Ceiba, Hond. 6135 Papeete, Tahiti 6135 Singapore, Sing, 6140 HCOV5, Azogues, Ecua. 6140 VLW6, Perth, Aus, 6145 Algiers, Algeria
6147 PRL9, 6147 PRL9, Rio de Jan., Braz. 6150 VLR6, Melbourne, Aus. 6150 BBC, London, Eng. 6155 4VWA, Cap Haltien, Haiti
6155 VOA, Salonika, Greece 6160 HJKJ; Bogota, Gol. 6160 FEN, Tokyo, Japan
6165 HER3, Bern, Switz 6165 X EWW, Mexico City,
6165 Saigon, Vietnam
6170 BBC, Limassol, Cyprus 6170 Cayenne, Fr. Guiana 6175 RTF, Paris, France 6180 BBC; London, England 6185 HJCT, Bogota, Col. 6190 VOA, 'Munich, Ger. 6190 HVJ, Vatican City 6190 HJEZ, Cali, Col. 6195 HRD2, La Ceiba, Hond. 6195 Pyongyang, N. Korea 6200 H12LR, G. Trujillo, D.R. 6200 4VHW, Port-au-Prince,
6208 TGHC, Guatemala, Guat. 6215 Pyongyang, N. Korea 6225 Peking, China
6305 Andorra, Andorra 6327 cocf, Havana, cuba
6345 Ulan Bator, Mong.

Kes: Call and Location
6373 Lisbon, Port.
6790 BBC, Limassol, Cyprus 7105 Madrid, Spain
7110 VOA, Colombo, Ceylon 7110 BBC, London, England 7115 Rabat, Morocco
7115 RFE, 7115 RFE, Germ.
7120 BBC , London, England 7120 BBC, Singapore
7125 Warsaw, Poland
7140 Monte Carlo, Monaee 7145 RFE, Ger.
7150 Khabarovsk, U.S.S.R.
7160 RTF, Paris, France
7160 VOA, Tangier, Mor:
7165 RFE, Germ.
7170 Algiers, Alg.
7180 Baghdad, Iraq
7185 BBC, London, Eng.
7200 BBC, London, Eng.
7200 R. Malaya, Sing.
7200 Omdurman, Sudan
7205 VOA, Salonika, Gr.
7210 BBC, London, Eng.
7210 Dakar, Mali Fed.
7210 Khabarovsk, U.S.S.R.
7220 VLD7, Melbourne, Aus.
7220 Budapest. Hung.
7230 BBC, London, Eng.
7235 Taipei, Taiwan, China
7235 VOA, Munich, Ger.
7240 RTF, Paris, France
7250 BBG, London, Eng.
7255 Sofia, Bulg.
7260 Saigon, Vietnam
7270 Motola, Sweden
7270 Magadan, U.S.S.R.
7275 RAt, Rome, It.
7280 Teheran, Iran
7280 HVJ, Vat. City
7285 Ankara, Turk.
7290 RAl, Rome, It.
7295 RFE, Ger.
7320 BBC, London, Eng.
7398 Damascus, U.A.R.
7505 Peking, China
7650 YNMS, Leon, Nic.
7670 Sofia, Bulg.
7850 Tirana, Alb
8002 Beirut, Leb.
8900 HCJC3, Zaruma, Eeua.
9009 Tel Aviv, Israel
9026 COBZ, Havana, Cuba
9065 Peking, China
9210 Leopoldville, Congo
9360 Madrid, Spain Cuba
9363 COBC, Havana, Cuba
9363 CoBC Havana, Cuba
9380 Alma Ata, Kazakh S.S.R.
9385 Leopoldville, Congo
9410 BBC, London, Eng
9440 CP38, La Paz, Bol
9458 Peking, China
9500 Magadan, U.S.S. Mex.
9500 Magadan, U.S.S.R.
9500 Moscow, U.S.S.R
9500 Moscow, U.S.S.R.
9505 PRB22, Sao Paulo, Braz. 9505 Rabat, Mor.
9505 HOLA, Golon, Pan.
9510 Peking, China
9510 VOA, Tangier, Mor.
9515 RAI, Caltanissetta, It, 9515 Ankara, Turkey 9520 Colombo, Ceyton 9520 Copenhagen, Dem
9520 VOA, Salonika, Gr 9520 VOA, Salonika, Gr.
9520 OAX8E, Iquitos, Per 9520 OAX8E, Iquitos,
9523 Paradys, S. Afr. 9525 BBC, Lonton, Eng 9525 J0B9, Tokyo, Japan 9525 Warsaw, Poland 9530 coco, Havana, Cuba 9530 VOA, Munich, Ger. 9530 AlR, Delhi, India 9530 VOA, Courier, Rhodes
9530 YVMZ, Maracaibo, Vent 9535 Lagos, Nigeria
9535 VOA, Manila, P.I.
9535 HER4, Bern, Switz. 9540 Warsaw, Poland
95400 mdurman. Sudan
9545 ZYS43, Curitiba, Braz.
9545 HED5, Beri, Switz.
9950 Prague, Czecho.
9550 AIR, Bombay, India
9550 OAXIZ, Tumbes, Peru
9555 CP6, La Paz, Bol.
9555 BBC, London, Eng 9555 XETT, Mexico City, Mex. 9560 RTF, Paris, Franes 9560 Tokyo, Japan 9563 OAX4R, Lima, Peru 9565 ZYK3, Recife, Braz. 9565 Radio Liberty, Ger. 9565 Khabarovsk, U.S.S.B.
9575 ZYZ27, Rio de Jan., Braz. 9575 Taipei, Formosa
9575 Taipei, Formosa
9580 VLA9, Melbourne, Aus. 9580 BBC. Landon, Eng. 9585 ZYR56, Saio Paulo, Braz. 9585 RTF, Paris, France 9590 D jakarta

## Kes. Coill and Lecarter 9590 Bueharett, Reth. 9595 J02s, Tokys, Japan 9598 CEse, Santiago, Chile 9600 BBC, Lendon, Eng, 9600 BBC, Lendon, Eng, 9607 Athens, Ger. <br> 9610 VLX9, Perth, Aus. 9610 ZYC8, Rio de Jan., Braz. 9610 Oslo, Norway 10 Oslo, Norway 9615 VOA, Tangier, Morocco 9615 ZOA, Tangier, Morocco 9620 PY8, Sa0 Paulo, Braz. 9620 Peking, China <br> 9620 VoA, Tangier, Mor. 9620 Saigon, Vietnam 9625 Brazzaville, Equat, Un. 9625 OAX8K, Iquitos, Peru 9625 Moscow, U.S.S.R.


9630. CR6RL, Luanda, Ang. 9630 VLG9, Melbourne, Aus. 9630 RAI, Rome. Italy 9630 Komsomolsk, U.S.S.R. 9635 ZYR83, Aparecida, Braz.
9635 VOA, Munich, Ger.
9635 Lisbon, Portugal -
9640 BBC, London, Eng.
9640 Cologne, Germany.
9640 Accra, Ghana
9640 HLK5, Seoul, Korea
9640 Moseow, U.S.S.R.
9645 TIFC, San Jose, C.R.
9645 HVJ, Vatican City 9650 BBC, Limassol, Gyprus 9655. Radio Free Europe, Ger 9660 LRX, Buenos Aires, Arg. 9660 LRX, Buenos Aires, Ar 9660 Radio Liberty, Ger. 9660 Teheran, Iran
9660 Teneran, Iran
9660 Komsomolsk, U.S.S.R 9665 Moseow, U.S.S.R.
9667 TGNA, Guatemala, Guat, 9670 Coca, Havana, Cuba 9670 Prague, Czecho.
9675 BBC, London, Eng.
9675 RTF, Paris, France
9675 JBS, Tokyo, Japan

9680 XEQQ, Mexico City, Mex. 9680 VOA, Tangier, Mor. 9680 Paradys, S. Afr
9685 Algiers, Aigeria
9690 LRA, Buenos Aires
Arg.
9690 BBC, London, Eng.
9690 BBC, Singapore
9700 Sofia, Bulgaria
3700 Rabat, Morocco
9705 Kabul, Afghan
9705 Brussels, Beig.
9705 Radio Free Europe, Port. 9710 BBC, London, Eng.
9710 RAI, Rome, It.
9715 Hilversum, Neth.
9715 Radio Free Europe, Ger. 9715 Radio Free Europ
9720 Paradys, S. Afr.
9725 Tel Aviv, Israel
9725 RFE, Port
9725 BBC, Singapore
9730 Brazzaville, Equat. Un. 9730 Leipzig, E. Ger, 9730 DZH7, Manila, P.I. 9735 Peking, China
9735 BBC, London, Eng.
9735 Cologne, Germany
9735 AIR, Madras, India
9740 YOA, Tangier, Mor.
9742 LRSi, Buenos Aires, Arg
9745 Brussels, Belg.
9745 HCJB, Quito, Ecua. -
9745 Ankara, Turk.
9745 Moscow, U.S.S.R,
9750 BBC, London, Eng.
9750 Radio Free Europe, Port.
9750 Khabarovsk, U.S.S.R,
9755 ZYW23, Goiania, Braz.
9755 RTF, Paris, France
9755 Saigon, Vietnam
9760 BBC, London, Eng.
9762 Hanoi, N. Vietnam
9765 Moscow, U.S.S.R.
9770 Brazzavilie, Equat. Un.
9770 BBC, London, Eng.
9775 Moscow, U.S.S.R.
9795 Cairo, U.A.R.
9800 Peking, China
9805 Cairo, U.A.R.
9825 BBC, London, Eng. -
9833 Budapest, Hung.
9840 Hanoi, N. Vietnam
9850 AlR, Delhi, India
9870 D jakarta, Indon
9895 Bengazi, Libya
9915 BBC. London, Eng.
9973 Peking, China
10335 Ulan Bator, Mong.
10530 Alma Ata. Kazakh S.S.R.
II 570 Moscow, U.S.S.R.
lla00 Peking, china
lif30 Moscow, U.S.S.R.

Kcs. Call and Location I1650 Peking, China
1665 Cairo, U.A.R
1675 Peking, China
11680 BBC, London. Eng.
II685 HVJ, Vat. City
11690 Moscow, U.S.S.R.
11700 RTF, Paris, France
11705 J0Aİ।, Tokyo, Japan
11705 J0All, Tokyo, Japain
11705 Horby, Sweden
11705 Moseow, U.S.S.R.
11710 VLBil, Melbourne, Ats. t
II710 AlR, Delhi, India
11710 WBOU, New York, N.Y.
11715 VOA, Munich, Ger.
11715 Moscow,
11715 Moscow, U.S.S.R.
11717 Athens, Greece
11720 Brazilia, Brazil
I 1720 BBC, Limassol, Cyprus 11725 Brazzaville, Equat. Un. 11725 Prague, Czecho.
11725 BBC, Singapore
11730 Hilversum, Neth.
II735 Rabat, Morocco
11735 Moscow, U.S.S.R.
11740 VLCII, Melbourne, Aus.
I 1740 CEll74, Santiago, Chile
11740 Peking, China
11740 VoA, Tangier, Mor.
11745 RFE, Germ.
11750 BBC, London, Eng.
11750 FEN, Tokyo, Japan
11755 Hilversum
11755 Komsomolsk, U.S.S.R.
11760 VLBII, Meibourme, Aus. 11760 VOA, Munich, Ger:
11760 Lourenco Marques, Moz
$11760 \mathrm{Hanoi}, \mathrm{N}:$ Vietnam
II765 ZYB8, Sao Paulo, Braz.
-1 1765 Berlin, E. Germany
11770 Colombs, Ceylon
11770 BBC, London, Eng.
li775 ZYZ28, Rio de Jan., Braz.
11775 Moscow, U.S.S.R.
I 1780 BBC, London, Eng
11785 VOA, Tangier, 1785 VOA, Tangier, Morocco 11790 VOA, London, Eng,
11790 Moscow, U.S.S.R.
11795 Cologne, Ger.
1795 Djakarta, Indon
11800 BBC, London, Eng.
11802 Warsaw. Poland
11805 RAI. Rome, It.
11805 RAI, Rome, It.
11805 VOA, Courier, Rhodes
11810 VLBIt, Melbourne, Aus. $\dagger$
11810 RAI, Rome, It.
11810 Amman, Jordan
11810 Bucharest, Rom.
11810 Bucharest, Rom.
11810 Horby, Sweden
11810 Horby, Sweden
11815 Madrid, Spain
I l820 Peking, China
11820 BBC, London, Eng.
I 1820 XEBR, Hermosillo, Mex.
11825 ELWA, Monrovia, Lib.
11830 WRUL, Boston, U.S.A.
11880 Moseow, U.S.S.R.
I!835 Algiers, Alg.
if 835 VA, Colombe
11835 VOA, Colombe, Ceylon
I 1835 CXA19, Montevideo, Urug.
11840 Prague, Czecho.
11840 VOA, Tangier, Mor.
11840 Lisbon, Port,
I 1840 Lisbon, Port.
Il840 Khabarowsk, U.S.S.R.
11840 Hanoi, $N_{2}$ Vietnam
11845 RTF, Paris, France
11845 Karachi, Pak.
11850 Sofia, Bulg.
II850 AIR, Bombay, India
I|850 Oslo, Norway
||855 Brussels, Belg.
I 855 Radio Free Europe, Ger.
II855 DZH8, Manila, P.I. 11860 Peking, China
11860 BBC, London, Eng.
11860 Moscow, U.S.S.R.
! 1865 PRA8, Recife, Braz.
! 865 VOA, Tangier, Mor.
11865 HER'5, Bern, Switz.
II865 Tunis, Tun.
11870 Moscow U.S.S.R.
11875 ZYN32, Salvador, Braz.
11875 VOA, Colombo. Ćeylon
11875 VOA, Tangier, Mor,
11880 BBC, London, Eng.
II880 XEH'H, Mexico City, Mex.
11885 Peking, China
11885 Karaehi, Pak.
11885 Radio Free Europe, Ger.
11890 Moscow, U.S.S.R.
11895 Dakar, Mali Fed.
11895 VoA, Tangier, Mor.
11895 VoA, Manila, P.I.
I1900 Bueharest, Rumania -
1900 CXA10, Montevideo, Ur.
11900 Moscow, U.S.S.R.
11905 RAI. Rome, Italy
11905 WDSI, New York, U.S.A.
11910 BBC, London, Eng.
11910 Budapest, Hung.
11910 Budapest, Hung.
11910 Bangkok, Thai.
11915 HCJB, Quito Ecua.
1915 Hilversum, Neth.

Kcs. Call and Loeation
Il920 DXF2, Manila, P.I.
I 1920 WLWO, Cincinnati,
11925 ZYR78, Sao Pauto, Braz.
I 1925 ZYR78, Sao Paufo, Braz.
I 1925 HLK
K, Seoul, Korea $\dagger$
! 1925 HLK6, Seoul, Korea $\dagger$
! 925 Wawsaw, Pol,
11925 Wawsaw, Pol,
I 1925 Moscow, U.S.S.R.
I 1930 BBC. London, Eng.
11930 BBC, Singapore
II935 Radio Liberty,
Il935 Radio Liberty, Ger.
I 940 CEII90, Valparaiso, Chile
I 1940 JOBiI, Tokyo, Japan
II940 JOBil, Tokyo, Japan
I 1945 Peking, China
I 1945 BBC, London, E
Il945 BBC, London, Eng.
I 1945 Cologne, Germany
11945 Gologne, Germany
11950 Warsaw, Poland
11950 Jidda, Saudî Arab.
I 1950 Moscow, U.S.S.R.
I 1955 B BC, London, Eng.
Il955 BBC, London, Eng
il955 BBC, Singapore
I1960 CEII96, Santiago, Ch.
11960 Moseow, U.S.S.R.
I 1965 Radio Liberty, Ger.
11970 Caracas, Ven.
11972 Brazzaville, Equat. Un. -
11975 Peking, China
11975 Moscow, U.S.S.R.
11985 Moseow, U.S.S.R.
11985 Moscow, U.S.S.R.
J1986 ELWA, Monrovia, Lib.
11990 Prague, Czecho.
12000 Moscow, U.S.S.R.
12000 Mescow, U.S.S.R.
12010 Hanoi, Vietnam
12020 AlR, Delhi, India
12020 Moseow, U.S.S.R.
12050 Cairo, U.A.R.
12095 BBC, London, Eng.
I 5020 Hanoi, $N$. Vietnam
15030 Peking, China
15060 Peking, China
15070 BBC, London, Eng.
15085 Grenada, Windward IS., BW:
15095 Peking, China
15100 Moseow, USSR
15105 ZYZ32, Rio de Jan., Braz.
I5I05 AIR, Delhi, India
15110 BBC, London, Eng.
15110 Moscow, USSR E
15115 HCJB, Quito, Eeuador -
15115 Peking, China
15115 Peking, China
15120 Colombo, Ceylon
15120 RAI, Rome, Italy
15120 Warsaw, Poland $\dagger$
15120 HVJ , Vatican City
$\lceil 5 \mid 25$ ZYN'3I, Salvador, Brazil
15125 Prague, Czeeho.
15125 Prague, Czecho.
15125 Seoul, Korea $-~$

| 15125 Veoul, Korea Manila, P.I. |
| :--- |
| 15 |

15125 Lishon, Portugal
15130 RTF, Paris, France
15130 VoA, Manila, P.I.
15130 KCBR, Delano, Calif.
15130 KCBR, Delano, Calif.
15130 WBOU, New York, USA
15130 WBOU, New Yo
15130 Moscow, USSR
15135 PRB23, Sao Paulo, Braz.
15135 JOBI5, Tokyo, Japan
$\mathbf{1 5} 135$ Radio Free Europe, Port
15135 Radio Free Eur
15140 Peking, China
$\$ 5140$ BBC, London, Eng.
15140 AlR, Delhi, India
15140 Komsomolsk, USSR
15140 Komsomolsk, USSR
15145 ZYK33, Recife, Brazil
15145 Radio Free Europe, Port.
15148 CE1515, Santiago, Chile
15150 Djakarta, Indonesia
15150 Lourenco Marques,
i5150. Lourenco Marques, Moz.
15150 Lisbon, Portugal
15150 Moscow, USSR
15150 Moscow, USSR ©
15153 0AX4T, Lima, Per
15153 OAX4T, Lima, Peru
15155 ZYB9, Sao Paulo, Brazy

Kes. Call and Location
15200 Moseow, USSR
$\$ 725$ XESC, Mexie City, Mex. 5295 WDSI, New York, USA
15210 VOA, Manila, P. 1.
${ }^{5} 210 \mathrm{KCER}$, Delano, Cal., USA
15210 Moseow, USSB
${ }^{5} 515$ Radio Free Europe, Port.
${ }_{5215} 15$ YoA, Okinawa, Ryukyu Is.
T0220 Hilversum, Neth.
15225 Taipei, Taiwan, china
15225 Radio Liberty, Germany
15225 Moseow, USSk
(5230 VLHI5, Melbourne, Aus
15230 VOA , Colombo, Ceylon
$\$ 5230 \mathrm{BBC}$, London, Eng.

15235 VOA, Tangier, Morocco $\{5235$ KOmsomolsk, USSR 15240 VLAI5, Melbourne, Aus. 15240 Horby, sweden
15240 Moslow, USSR
1540 Belgrade, Yugoslavia
15240 Belgrade, Yugoslavia
15245 ZYE24, Belem, Braz
15250 VOA, Manila, P.I
65250 Bucharest Rumania USA
$\$ 5255$ Wadio Fin Cineinnati, USA
15257 FEN, Tokyo, Japan
${ }_{13260} \mathrm{BBC}$, London, England
15265 Colombo, Ceylon
${ }^{1 / 52655}$ Moseow, USSR
${ }_{15270}{ }^{5270}$ AlR, Bombing, India
15270 AlR, Bombay, India
15270 VOA, TTangier, Moroce
15270 WBOU, New York, (VOA)
Tg70 WDS1, New York, USA
15275 Cologne, Germany
15275 Karachi, Pakistan
15275 VOA, Manila, P.I.
 15280 ZL4, Wellington 15285 Brussels, Belyium ${ }^{5} 5285$ Prague, Czecho. 15285 AIR, Bombay, india 15285 WBOU, New York, USA 15290 Lru, Buenos Aires, Arg. ${ }^{55290}$ Peking, China
15290 KCBR, Delano, Cal., UUSA
15290 WLWO, cincinnati, USA
(5295 Rio de Janeiro, Brazil
15295 RTF, Paris, France
15295 VOA, Tangier, Merocio
15295 Mosicow, USSR
${ }^{55300}$ BBC, London, Eng. ${ }^{\dagger}$
15300 DZH', Manila, P.i.
15805 Dacea, Pakistan
15305 Moscow, USSR
15310 BBC, London, England -
15310 BBC, Singapore
15310 KCBR , Delano, Cal., USA
15315 VLCl5, Melbourne,'Aus.
15315 Peking, china
(5315 HEUG,' Bern, Switz. -
15315 Moscow, USSR
15320 VLC 15,' Melbourne, Aus.
${ }^{1} 5320$ AlR, D Deihi, India'
15320 VOA. Tangier, Moroce
15325 ZYR228, Sao Paulo, Braz.
15325 RAI, Rome, Italy

${ }_{5330}^{5325}$ VOA, Munich, Germany 15330 VOC, Salonika, Greece 15330 WBOU, New York, USA 15330 WBOU, New York, SAA 15335 Wrussels, Belgium
 1535 Karachi, Pakistan 15335 Karach Manila, Pa, ${ }_{15840}^{5335}$ Kadio Liberty, Germany 15840 Radio Liberty.
15349 Moscow, USSR ${ }_{5345}$ LRA, Buenos Aires, Arg. 15345 LRA, Buenos Aires, Ara 15345 Taipei, Taiwan,
15345
Athens, Grece

Kcs. Call and Location

## 15345 Rabat, Morocco

15350 RTF, Paris, France 15350 WLWO, Cincinnati, USA 15355 Radio Free Europe, Port. 15360 BBC , London, England 5360 Moscow, USSR
15365 WLWO, Cincinnati, Ohio 15370 ZYC9, Rio de Jan., Braz. 15370 Radio Liberty, Germany 15375 BBC, London, Eng. 15375 Cologne, Germany 1 15380 VOA, Tangier, Morocco 15380 VOA, Okinawa, Ryukyu 15380 WRU'L, Boston, USA 15385 DZF3, Manila, P.I. 15385 CXA60, Montev
15385 Moscow, USSR
15390 BBC, London, Eng.
15390 Moscow, USSR
$\$ 5395$ Radio Liberty, Germany
15400 RTF, Paris, France 15400 RAI, Rome, Italy 15405 Gologne, Germany 15405 Moscow, USSR i 5407 Paramaribo, Surinam 15410 Prague, Gzecho. 15410 Radio Liberty, Germany $\$ 5410$ VOA, Tangier, Moroceo 15415 AFRS, Munieh, Germany 15415 Budapest, Hupgary 15417 Peking, China $\mid 5420$ Brazzaville, Congo Rep. 15420 Brazzayilie, Congo R
15417 BBC, London, Eng. 15420 Madrid, Spain 15420 Madrid, Spain
15420 Moseow, USSR
15420 Moscow, PSSR, Aus.
15425 VXI5, Perth, | 5425 Hilversum, Neth. 15430 Peking, China 15430 Cairo, UAR
15430 Mescow, USSR
$\$ 5435$ BBC, London, Eng. I5435 BBC, Singapore 15440 VOA, Munich, Germany 5440 Moscow, USSR 15445 Brazzaville, Congo Rep. 5445 Hilversum, Neth. 15447 BBC, London, Eng 15450 Komsomolsk, USSR 15465 Paramaribo, Surinam 15470 Moscow, USSR
15475 Cairo, UAR
55480 Peking, China
15480 AlR, Delhi, India
i 5520 Peking China
f 5520 Peking, China
15555 Peking, China
15610 Peking, China
17605 Peking, China
17675 Peking, China
17675 Peking, China
17690 Gairo, UAR
17690 Cairo, LAR
17695 BBC, London, Eng.
17700 BBC, London, Eng.
17700 Moseow, USSR
I7705 A1R. Delhi, India
17705 VOA, Tangier, Morocco
17710 VLGiz, Melbourne 17710 VLG17, Melbourne, Aus. 17710 WLWO, Cincinnati, USA 17710 Moscow, USSR
17715 BBC, London, Eng. e 17715 YOA, Colombo, Ceylon 17720 Reking, China 17720 Brazzaville, Congo Rep. 17720 Radio Liberty, Germany 17720 Moscow, USSR
17722 San Jose dos Campos,
17725 Radio Free Europe, Port. 17725 AIR, Delhi, India 17730 BBC, London, Eng. 17730 Radio Liberty. Germany 17735 Radio Free Europe, Port. I7735 KCBR, Delano, Calif. 17735 HVJ, Vatican City 17740 WLWO, Cincinnati, USA 17740 BBC, London. Eng. 17740 Moscow, USSR 17740 Moscow, USSR
17745 BBC , London, Eng.

Kcs. Call and Location 17745 Karachi, Pakistan 17745 VOA, Manila, P.I. 17747 Peking, China 17750 WRUL, Boston, USA 17750 VOA, Tangler, Morecco
17750 Moscow, USSB 17750 Moscow, USSR
17755 Prague, Gzecho.
17755 BBC, Singapore
17760 WGEO, Schenectady, USA
17760 AIR, Delhi, India
17760 Moscow, USSR
17765 RTF, Paris, France
17765 Peking, China
17770 RAI, Rome, Italy
17770 RAl, Rome, Italy
17770 Radio Free Europe, Port.
17770 KCBR, Delano, Cal., USA
17773 Athens, Greece
$i 7775$ Hilversum, Neth.
17780 WBOU, New York, USA
17780 VOA, Manila, P.I.
17780 Moscow, USSR
17785 HER7, Berne, Switz.
17785 AlR, Delhi, India
17788 Taipei, Formosa, China
17790 BBC, London, Eng.
17790 Prague, Czecho.
17790 AlR, Delhi, India
17795 KGEI, San Fran., USA
17795 WLWO, Cincinnati, USA 17795 Moscow, USSR
17795 GRGRZ, Luanda, Angola
17800 Helsinki, Finiland t
17800 RAI, Romo, italy
17800 Warsaw, Poland t
17805 Radio Free Europe, Port. 17895 DZ16, Manila, P.I.
17810 BBC, London, Eng. 17810 AlR, Delhi, India 17810 Hilversum, Neth. 17810 Moscow, USSR
17815 Prague, Gzecho.
17815 Cologne, Germany
17815 KCBR, Delano, Calif. 17815 KCBR, Delano, Cali 17815
17820
ZLI4, Wellington,
L. 17823 Ankara, Turkey 17825 JOA17, Tokyo, Japan 17825 Oslo, Norway
17825 Moscow, USSR
17830 AlR. Delhi, India 17830 AlR, Delhi, India (VOA)
17830 WDSI, Now York (VOA) 17830 WDSI, Now York (VOA)
17830 WLWO, Cincinnati, USA 17830 WLW0, Cincinhati, USA
17835 Radio Free Europe, Port. 17835 Radio Free Europe, Port
17840 VLB17, Melbourne, Aus. 17840 Horby, Sweden f
17840 Horby, Sweden
17840 Moscow, USSR
17840 HVJ, Vatican City
17845 Brussels, Belgium
17845 WRUL, Boston, USA
17845 WRUL, Boston, USA
17850 RTF, Paris, Fr
17850 Moscow, USSR
17850 Moscow, 17855 VOA, Tangier, Merocco
17855 VOA, Tangier, Morocco
17855 J0A17, Tokyo, Japan
17855 JoAl7, Tokyo, Japan
$\mathbf{1 7 8 5 5}$ Radio Free Europe, Port
17855 Radio Free Europe, Port
17860 Brussels, Belgium
17860 BBC, London, Eng.
17860 Damascus, UAR
17865 Radio Liberty, Germany 17870 BBC, London, Eng. 17870 WLWO, Cincinnati, USA 17875 PRL2, Rio de Jan., Braz. 17875 Cologne, Germany 17875 Radio Free Europe, Port. 17880 Lisben, Portugal 17880 Tunis, Tunisia
17880 Komsomolsk, USSR 17880 Moscow, 17885 Radio Free Europe, Port 17885 Radio Free Europe, Port
17888 Taipei, Formosa, China 17890 HCJB, Quito, Ecuador 17890 BBC, London, Eng. 17890 HLK42, Seoul, Korea 17892 Voice of Free Africa 17895 Lisbon, Purt. 17895 Moscow, USSR

Kcs. Coll and Loeqtion 17900 Peking, China
17920 Gairo, UAR
18080 BBC, London, Eng.
${ }_{21455}^{21450}$ VOA, Tangier, Morocto
21455 KOA,
21460 KCBR, Deiano, Caniff.
21460 WRUL, Boston, USA
21470 BBC, London, Eng
21480. Hiversum, Neth.
21485 Radio, Free Europe, Port

21485 WLWO, Cintinnati, USA
21490 BBC, London, Eng.
21490 Cologne, Germany
21495 Lisbon, Port
21495 Lisbon, Port.
21495 D 218, Manila,
21495 DZ18, Manîla, P.I.
21500 Brazzaville, Congo Rep.
21505 WDSI, Mew York USA
21505 WDSI, New York, USA
21505 Moscow, USSR
21510 Brussels, Belgium
$21515 \mathrm{HVJ}, V a t i c a n ~ C i t y$
21515 HVJ, Vatican City
21520 HER8, Berne, Switz.
21525 Moscow, USSR
21530 BBC, Londón, Eng.
21535 ELWA, Monrovia, Liberia -
21540 VLD2, Melbourne, Aus.
21540 wBOU, New York, USA
21540 WBOU, New York, US
21550 BBC, London, Eng.
21550 BBC, London, Eng.
21550 Moscow, USSA
21560 RA, Rome, Italy
21560 RAA, Rome, Italy
21565 Hilversum, Neth.
21570 WBOU New York (VOA)
21575 Moscow, USSR
21580 RTF, Paris, France
21590 Karachi, Pakistan
21590 WGEO, Schenectady, USA
21600 VLG21, Melbourne, Aus.
21600 Radio Frea Europe, Port.
21605 AlR, Delhi, India
21605 HEIG, Berne, Switz
21610 WLWO Cincinnati (VOA)
21615 BBC, London, Eng.
21620 RTF, Paris, Frarice
21620 AIR, Delhi, India
21620 10B21, Tokyo, Japan
21625 Moscow, USSR
21630 BBC , London, Eng.
21640 BBC, London, Eng.
21650 Cologne, Germany
21650 AlR, Delhi, India
21650 WDSI, New York, USA
21655 VoA, Manila, P.I.
21655 VOA, Mania, P.n. 21665 Radio Free Europe, Port. 21670 Oslo, Norway
21675 BBC, London, Eng.
21680 VLC21, Melbourne, Aus. 21685 Dacca, Pakistan
21690 WDSI, New York, USA 21700 AlR, Delhi, India 21700 Lisbon, Port
21705 VOA, Tangier, Merocco 21710 BBC , London, Eng. 21720 Radio Fres Europe, Port. 21730 Brdssels, Belgium 21735 Wologne, Germany, USA 21740 BBC London, Eng. USA 21740 KBio Free Europe Port 21745 Radio Free Eurh 25630 KGBR, Delano, Cal., USA 25630 KCBR, Lenano, Gai.,
25650 BBC, London, Eng. 25670 BBC, London, Eng. 25735 VLY25. Melbourne, Ausi 25750 BBG, iondon, Eng. 25750 BBC, Landon, 25800 Paradys, $S$ At 25800 Paradys, 258 BBC, London, Eng. 25880 VOA, Tangief, Morocco 25880 VoA, Nangler
25900 Oslo, Norway 25900 OSio, Norway, Eng. 26040 WBOU, New York, USA 26080 BBC, London, Eng.

## Canadian Short-Wave-Domestic and International

*Transmitter at Sackville, New Brunswick

Ke! C.L. Location 5970 CBNX St. John's, Nifd. 5970 CKNA Montreal, Que.* E990 CHAY Montreal., Que.* 6005 CFCX Montreal. Que. 6010 CICX Syeney, N.S. 6030 GFVF Catgary, Alta, 6060 CKRZ Montreal, Que.*

184 WHITE'S"RADIO LOG

Kc. C.L. Location 6070 CFRX Toronto, Ont. 6080 CKFX Vancouver, B.C. 6090 CBFW Montreal, Que. 6090 CKOB Montreal, Que.* 6130 CHNX Halifax, N.S. ${ }_{6160} \mathrm{CBUX}$ Vancouver. B. C . 6160 CHAC Montreal; Que. ${ }^{*}$ 9520 CBFR Montreal, Que.
9585 CKLP Montreal. Que. 9520 CKLP Montral, Que,*
9510 CBFX Montrai, Que. 9610 CHLS Montreal, Que.* 9630 CBFO Montral, Que.

## Ke. C.L. Locafion

 9630 CKLO Montreal, Que.* 9710 CHLR Montreal, Que.* 9740 CHFO Montreal, Que.* 11705 CBFY Montreal, Que. 1705 CKXA Montreal, Que.* 11720 CBFL Montreal, Que. 11720 CHOL Montreal, Que.* 11760 CBFA Montreal, Que. 11760 CKRA Montreal, Que.* 11900 EKEX Montreal, Que.* 11945 CKEX Montreal, Que.* i 5090 CKLX Montreal, Que.*Kc. C.L. Location \$5105 CKUS Montreal, Que.* 15190 CBFZ Montreal, Que. 15190 CKCX Montreal, Que.* 15255 CKSR Montreal, Que.* 15255
15275 CKBR Montreal, Que.*
Qutreal, 15320 CKCS Montreal, Que.* 17710 CHSB Montral, Que.* 17735 CHRX Montreal, Que.* 17735 CHRX Montreal, Que.*
17820 CKNC Montreal, Que.* 17820 CKNC Montreal, Que.* 17865 CHYS Montreal, Que.*
21600 CKRP Montreal, Que.* 21600 CKRP Montreal, Que.**
21710 CHLA Montreal, Que.*

# Watch for the SCIENCE EXPERIMENTER On Sale November Ist 

 Founder, National Radie Institute, Washington D.C.
Over 40 years' experience
Onen at home.
raining
Oldest and Largest Home Study RadioTelevision Training School. N.R.I. has Trained Thousands for Good Pay Jobs
Since 1914 . . . for more than 40 years-N.R.I. has been training ambitious men at home in spare time for Radio-TV. Let us send you a sample lesson to help prove you can keep your iob and TRAIN AT HOME in your spare time for better pay and a brighter future. We will also send N.R.I.'s $64-$ page catalog to show you that RadioTelevision is today's field of OPPORTUNITY for properly trained men.
Television Making Good Jobs, Prosperity
The technical man is looked up to. He should be. He does important work, is respected for what he knows, gets good pay for it. There are splendid opportunities for the man wall trained in Radio-Television Servicing or Broadcasting. Government, Aviation, Police, Ship, Micro-Wave Relay, Two-Way Communications for buses, taxis, trucks are growing Radio-TV fields, making more good jobs.
N.R.I, is the Tested Way to Better Pay N.R.I. Training is practical, thorough. You get the benefit of N.R.I.'s 40 years' experience. Many successful N.R.I, men start without any knowledge of Radio. many without high school education. Find out what Radio-Television training can mean to you. Make the first move today toward becoming one of that select group-a Radio-TV Technician. Send postage.fres eard for Actual Lesson and 64 -page Catalog, both FREE. NATIONAL RADIO INSTITUTE, Dept. OJB3, Washington 16, D. C.

## WHAT N.R.I. GRADUATES DO AND SAY



See Other Side

## Without Extra Charge NRI Sends Equipment for

 Practical Experience

Training is based on LEARNING-BY. DOING. N.R.I. training includes kits of parts which you use to build equipment, and get practical experience on circuits common to both Radio and Television.
Shown tieft is low. Dower Broadcasting Transmitter you build as part of N.R.L. Communications Course. FREE Catalog shows other equipment you get, things you learn.

## BUSINESS REPLY CARD

No Postage Stamp Necessary If Mailed In The United Stotes

## POStAGE WILL bE PAID by

NATIONAL RADIO INSTITUTE
Washington 16, D. C.


J. E. SMITH, Founder, N.R.I

Bigger than ever and still growing. That's why Radio.Television has sperial appeal to ambifious men nat satisfied with their future prospects. More than 4,000 Radio and TV Stations use trained technicians. 150 million home and auto Radios and 40 million TV sets must be kept in service. Calor TV promises added opportunities. There are good jobs, bright futures in Radio. TV Servicing or Communications. Training PLUS Opportunity is the ideal combination for success. Plan now to get into Readio-TV. The technical man is looked up to does important work gets good pay. Koep your lob while training. With N.R.L. you learn at home in spare fime. N.R.I. is the O DEST and LARGEST home study Radio-TV school. Its methods heve proved successfui for more than 40 years. See Other Side

## CUT OUT AND MAIL THIS CARD NOW

 Sample Lesson \& 64-Page Catalog Both FREE
## NO STAMP NEEDED - WE PAY POSTAGE

## NATIONAL RABIO INSTITUTE

Dept. OJB3, Washington 16, D. C.
Mail me Sample Lesson and 64-page Catalog. (No salesman will call. Please write plainly.)

NAME $\qquad$ AGE

ADDRESS

CITY $\qquad$ ZONE $\qquad$ STATE $\qquad$ ACCREDITED MEMBER, NATIONAL HOME STUDY COUNCIL


## IStart Soon to Make \$10-\$15 a

## IWeek Extra in Your Spare Time

Soon after enrolling, many N.R.I. students start to earn $\$ 10$. $\$ 15$ a week in spare time fixing sets for friends and neighbors. Some make enough to start their own full time Radio-TV shops. Easy-to-understand lessons teach you basic principles. You LEARN-BY-DOING on N.R.I. equipment which "brings to life" things you study.

Find out what N.R.I. offers. Study fast or slow -as you liko. Diploma whan you graduate. Mail postage-free postcard now. ACTUAL LESSON FREE. Also 64 -page catalog that shows opportunities, equipment you get. Cost of N.R.I. courses low. Easy terms. NATIONAL RADIO INSTITUTE, Dept. 0JB3, Washingtor 16, D. C.


[^0]:    A copy belongs in every reference tibrary, school-every shop, plant, factory-with ev-
    ery machinist, ensineer,
    etudent. inventor.

[^1]:    PRENTICE-HALI, Inc., Dept. 5747-KI
    Englewood Cliffs, N. J.
    Send me, for 10 DAYS' FREE TRIAL, "Radio Servicing," by Abraham Marcus, I will return it in ten days and pa nothing-or keep it and send $\$ 1.95$ down (plus postage)
    and $\$ 2$ monthly for 3 months. and $\$ 2$ monthly for 3 months.
    Name
    Address
    City . . . . . . . . . . . . . . . . . . . . . . State
    ( ) SAVE! Send $\$ 7.95$ WITH COUPON-we pay postage.

[^2]:    The serious young junior executive above is David Sarnoff as he looked 40 years ago; today he is RCA's Chairman of the Board of Directors and Chief Executive Officer.

[^3]:    MATERIALS LIST-UNDERWATER TELEPHONE
    No. Req'd Size and Description

    ## AMPLIFIER

    1 RI-4.7K, 1 watt, $10 \%$ carbon resistor
    4 R2, R3, R10, R11-220 ohm, 1 watt, $10 \%$ carbon resistors
    1 R4-5K, 2 watt, variable resister (volume control) Ohmite type AB
    1 R5-1K, $1 / 2$ watt, $10 \%$ carbon resistor
    R6-56K, 0 watt, $10 \%$ carbon resistor
    R7— 22 ohm, 2 watt, $10 \%$ carbon resistor
    R8- 120 ohm, 2 watt, $10 \%$ carbon resistor
    R9- 270 ohm, 2 watt, $10 \%$ carbon resistor
    R12-60 ohm, 4 watt, variable resistor (remote volume control) IRC type 60
    R13-47 ohm, 2 watt, $10 \%$ carbon resistor
    R14- $4.7 \mathrm{~K}, 1$ watt, $10 \%$ carbon resistor
    C1, C2, C5, C7, C8-0.1 mfd., 200 -volt paper capacitors
    C3-0.02 mfd., 200 -volt paper capacitor
    C4- 8 mfd , 50 -volt electrolytic capacitor
    C6-100 mfd., 6 -volt capacitor
    Sl-Telever type 16006L, push-to-talk switch (Alternate Switcheraft 11006)
    1 S2-Arrow-Hart and Hegeman bat handle toggle, type 82024-D
    1 TI-transformer, Argonne AR-123
    1 T2-transformer, Argonne AR-105
    1 T3 transformer, Motorola type 25C536761 only (auto ra. dio replacement) available Motorola parts distributors
    1 TR1-Sylvania type 2 N35 transistor, NPN
    1 TR2-CBS type 2N155 transistor, PNP
    1 M1-carbon microphone, Western Electric type F-1 or equiv.* (Surplus item available Columbia Electronics; 2251
    W. Washington Blyd., Los Angeles, Calif.)

    1 speaker, 4 in. PM type, cone speaker

    ## hardware

    J1-connector, 3 conductor, Amphenol type 91-PC3F
    J2-telephone jack, Mallory type XP4B
    J3-connector, 2 conductor, Amphenol type 80-PC2F
    $9 \times 6 \times 5^{\prime \prime}$ steel carrying case, Bud \#CC-1095, black wrinkle finish, with handle
    $14 \times 2 \times 23 / 4^{\prime \prime}$ box chassis, LMB Model 102
    1 fuse retainer, Buss type 342001
    1 shaft lock for R12, Mallory type 12A1496
    socket, transistor
    battery holder, Keystone zype
    Misc. plastic spray, rubber feet, mounting screws, nuts,
    lockwashers, decais
    Unless indicated otherwise, all parts are available from Lafayette Electronics, 165-58 Liberty Ave., Jamaica 33, N.Y. PARTS FOR SCUBA OR SKIN DIVER
    1 microphone, throat type, Army or Air Force surplus, available from Roscoe Ward Bargain Bazaar, 3831 Hixson Pike, Chattanooga 5, Tenh.
    1 headphone, 11 ohm, low impedance type, Western Electric HAL or equal
    1 Pl-Cannon MS3106B12S-3P, with Cannon MS3057-4A cable clamp (optional)
    1 P2-Cannon MS3106B10SL-3S, with MS3057-4A cable clamp (optional)
    I P3-Amphenol 91-MC3M
    100 ft 3 -conductor cable, rubber covered Belden 8453 with spool, or windup real

    ## PARTS FOR SUIT DIVER'S FACE MASK

    1 microphone-Western Electric type N1, single button carbon, 50 ohm*
    1 headphone, Western Electric type HA1, or equal
    1 Jl-Amphenol MS3102A10SL-3P
    1 Pl-Amphenol MS3106B10SL-3S, with Cannon MS3057.4A cable clamp
    1 P2-Amphenol 91-MC3M
    100 ft 3 -conductor cable, rubber-covered Belden 8453

    * Telephone parts are also available from Telephone Repair and

    Supply Company, 1760 Lunt Avenue, Chicago 26, III.

[^4]:    * Time is given on the 24 -hour clock. 1200 is $\mathbf{1 2}$ noon, $\mathbf{1 3 0 0}$ is $\mathbf{1 p m}, 2400$ is midnight, and so on. In other words, for times past noon subtract 1200 to get Eastern Standard Time.
    $\dagger$ Frequencies listed in brackets are alternate possibilities. If you fail to hear a program on the channels listed first, try these.

[^5]:    MATERIALS LIST—FOOT SWITCH
    No. Req. $\quad$ Description
    1 switch, either a momentary contact type, such as $1 / 2$ amn, normally off (Grayhill 4001) or $1 / 2$ amp, normally on (Grayh: 1 4002 ) or 10 amp , normally off (Grayhill 2201) or 10 amp , normally on (Grayhill 2202) or a positive contact type, 4 amp , push on-push off (Carling 110-SP).
    $131 / 4 \times 21 / 8 \times 15 / 8^{\prime \prime}$ metal box (Bud CU-2101)
    1 convenience outlet extension (electrical or variety store)

